• Title/Summary/Keyword: Mathematical communication

Search Result 750, Processing Time 0.019 seconds

Metacognitive Learning Methods to Improve Mathematical Thinking (메타인지 전략 학습을 통한 수학적 사고력 신장 방안 연구)

  • Park, Hey-Yeun;Jung, Soon-Mo;Kim, Yunghwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.4
    • /
    • pp.717-746
    • /
    • 2014
  • The study aimed to explore how to improve mathematical thinking through metacognitive learning by stressing metacognitive abilities as a core strategy to increase mathematical creativity and problem-solving abilities. Theoretical exploration was followed by an analysis of correlations between metacognitive abilities and various ways of mathematical thinking. Various metacognitive teaching and learning methods used by many teachers at school were integrated for sharing. Also, the methods of learning application and assessment of metacognitive thinking were explored. The results are as follows: First, metacognitive abilities were positively related to 'reasoning, communication, creative problem solving and commitment' with direct and indirect effects on mathematical thinking. Second, various megacognitive ability-applied teaching and learning methods had positive impacts on definitive areas such as 'anxiety over Mathematics, self-efficacy, learning habit, interest, confidence and trust' as well as cognitive areas such as 'learning performance, reasoning, problem solving, metacognitive ability, communication and expression', which is a result applicable to top, middle and low-performance students at primary and secondary education facilities. Third, 'metacognitive activities, metaproblem-solving process, personal strength and weakness management project, metacognitive notes, observation tables and metacognitive checklists' for metacognitive learning were suggested as alternatives to performance assessment covering problem-solving and thinking processes. Various metacognitive learning methods helped to improve creative and systemic problem solving and increase mathematical thinking. They did not only imitate uniform problem-solving methods suggested by a teacher but also induced direct experiences of mathematical thinking as well as adjustment and control of the thinking process. The study will help teachers recognize the importance of metacognition, devise and apply teaching or learning models for their teaching environments, improving students' metacognitive ability as well as mathematical and creative thinking.

  • PDF

A Case Studies for the Recovery of Mathematics Education: Focusing on the Utilization of Teachers' Mathematical Metaphors and the Structure of Teacher Discourse (수학 교육회복을 위한 사례 연구: 교사의 수학적 은유 활용과 교사 담론의 구조를 중심으로)

  • Choi, Sang-Ho
    • Communications of Mathematical Education
    • /
    • v.36 no.3
    • /
    • pp.397-415
    • /
    • 2022
  • The purpose of this study is to analyze the discourse structure of teachers that can help students participate in class by using mathematical metaphors that can arouse students' interest and motivation. In order to achieve this goal, we observed a semester class of a career teacher who practiced pedagogy that connects students' experiences with mathematical concepts to motivate students to learn and promote participation. Among the metaphors that the study target teachers used in a variety of mathematical concepts and problem-solving processes during the semester, we extracted the two class examples that can help develop teaching methods using metaphors. Representatively selected two classes are one class example using metaphors and, the other class example using metaphors and expanding and applying problems. As a result of analysis, the structure of teacher discourse that uses metaphors and expands and applies problems by linking students' experiences with mathematical content was found to help solve a given problem and elaborate mathematical concepts. As a result of the analysis, the discourse structure of teachers using mathematical metaphors based on communication with students could provide implications for the development of teaching methods for the recovery of mathematics education.

Teleportation into Quantum Statistics

  • Gill, Richard
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.2
    • /
    • pp.291-325
    • /
    • 2001
  • The paper is a tutorial introduction to quantum information theory, developing the basic model and emphasizing the role of statistics and probability.

  • PDF

DETERMINANT OF INCIDENCE MATRIX OF NIL-ALGEBRA

  • Lee, Woo
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.577-581
    • /
    • 2002
  • The incidence matrices corresponding to a nil-algebra of finite index % can be used to determine the nilpotency. We find the smallest positive integer n such that the sum of the incidence matrices Σ$\_$p/$\^$p/ is invertible. In this paper, we give a different proof of the case that the nil-algebra of index 2 has nilpotency less than or equal to 4.

Transient diffusion approximation for $M/G/m/N$ queue with state dependent arrival rates

  • Shin, Yang-Woo
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.715-733
    • /
    • 1995
  • We present a transient queue size distribution for $M/G/m/N$ queue with state dependent arrival rates, using the diffusion process with piecewise constant diffusion parameters, with state space [0, N] and elementary return boundaries at x = 0 and x = N. The model considered here contains not only many basic model but the practical models such as as two-node cyclic queue, repairmen model and overload control in communication system with finite storage buffer. For the accuracy check, we compare the approximation results with the exact and simulation results.

  • PDF

A Survey on Network Survivability Models (네트워크 생존도 모형 개관)

  • Myung, Young-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.2
    • /
    • pp.181-189
    • /
    • 2008
  • Survivability of a network is one of the most important issues in designing present-day communication networks. For the past few decades, a lot of researches have proposed the mathematical models to evaluate the survivability of networks. In this paper, we attempt to survey such researches and classify them based on how these researches measure the survivability of a network.

A NOTE ON SEMI-SELFDECOMPOSABILITY AND OPERATOR SEMI-STABILITY IN SUBORDINATION

  • Choi, Gyeong-Suk;Kim, Yun-Kyong;Joo, Sang-Yeol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.483-490
    • /
    • 2010
  • Some results on inheritance of operator semi-selfdecomposability and its decreasing subclass property from subordinator to subordinated in subordination of a L$\acute{e}$evy process are given. A main result is an extension of results of [5] to semi-selfdecomposable subordinator. Its consequence is discussed.

SOME RESULTS ON CONVERGENCE IN DISTRIBUTION FOR FUZZY RANDOM SETS

  • JOO SANG YEOL;CHOI GYEONG SUK;KWON JOONG SUNG;KIM YUN KYONG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.171-189
    • /
    • 2005
  • In this paper, we first establish some characterization of tightness for a sequence of random elements taking values in the space of normal and upper-semicontinuous fuzzy sets with compact support in $R^P$. As a result, we give some sufficient conditions for a sequence of fuzzy random sets to converge in distribution.

CENTER SYMMETRY OF INCIDENCE MATRICES

  • Lee, Woo
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2000
  • The T-ideal of F(X) generated by $x^{n}$ for all x $\in$ X, is generated also by the symmetric polynomials. For each symmetric poly-nomial, there corresponds one row of the incidence matrix. Finding the nilpotency of nil-algebra of nil-index n is equivalent to determining the smallest integer N such that the (n, N)-incidence matrix has rank equal to N!. In this work, we show that the (n, (equation omitted)$^{(1,....,n)}$-incidence matrix is center-symmetric.

  • PDF

SUBORDINATION, SELF-DECOMPOSABILITY AND SEMI-STABILITY

  • Choi, Gyeong-Suk;Joo, Sang-Yeol;Kim, Yun-Kyong
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.787-794
    • /
    • 2006
  • Two main results are presented in relation to subordination, self-decomposability and semi-stability. One of the result is that strict semi-stability of subordinand process by selfdecomposable subordinator gives semi-selfdecomposability of the subordinated process. The second result is a sufficient condition for any subordinated process arising from a semi-stable subordinand and a semi-stable subordinator to be semi-selfdecomposable.