A NOTE ON SEMI-SELFDECOMPOSABILITY AND OPERATOR SEMI-STABILITY IN SUBORDINATION

Gyeong Suk Choi, Yun Kyong Kim, and Sang Yeol Joo

ABSTRACT. Some results on inheritance of operator semi-selfdecomposability and its decreasing subclass property from subordinator to subordinated in subordination of a Lévy process are given. A main result is an extension of results of [5] to semi-selfdecomposable subordinator. Its consequence is discussed.

1. Introduction

We use the terminology in Sato's book [17]. Let m be a nonnegative integer and let b > 1. A sequence of strictly decreasing subclasses $L_m(b)$ of the class of infinitely divisible distributions was introduced and characterized in Maejima and Naito [11]. A description of the classes $L_m(b)$ is given in Section 2. A distribution in the class $L_0(b)$ is called semi-selfdecomposable by Maejima and Naito [11]. This notion is a natural extension of selfdecomposability on the one hand and semi-stability on the other. Its importance comes from mathematical physics. For a relation of semi-selfdecomsability with diffusions on Sierpinski gaskets, see [14] and references therein. Later, Maejima, Sato, and Watanabe [12, 13] extended this notion to that of operator semi-selfdecomposability. We note that operator semi-selfdecomposability offers higher flexibility in stochastic modeling then semi-selfdecomposability.

It is an interesting question to see whether operator semi-selfdecomposability or the operator version of the class $L_m(b)$ property is inherited under time change. In this paper, this question is considered in relation to subordination of a Lévy process.

Subordination of a Lévy process is defined as follows.

Let $\{T(t)\}$ be an increasing Lévy process on R and $\{X(t)\}$ be a Lévy process on R^d , independent of $\{T(t)\}$. Here R^d is the d-dimensional Euclidean space with the inner product $\langle x,y\rangle$ for x,y. Subordination is a transformation of $\{X(t)\}$ to a new process $\{Y(t)\}$ defined by composition as Y(t) = X(T(t))

Received September 3, 2008; Revised November 5, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 60G51; Secondary 60E07.

Key words and phrases. operator semi-selfdecomposability, operator semi-stability, strict operator semi-stability, subordination, semi-selfdecomposability.

through random time change by $\{T(t)\}$. Processes $\{X(t)\}$, $\{T(t)\}$ and $\{Y(t)\}$ are respectively called subordinand, subordinator (subordinating) and subordinated.

The importance of subordination is increasing in mathematical finance. See [1] and references given there. Particularly, interesting models including some financial models are given in [2]. Recently, this notion was extended to the general case in [15, 16].

From Theorem 6.1 of [2], it is well known that in subordination of strict stability, the subclasses L_m of the class L_0 of selfdecomposable distributions are inherited from subordinator to subordinated. This is extended to the general case in Theorem 3.1 of [19] on the one hand, and in the case where the subordinator $\{T(t)\}$ is a new selfdecomposability of stochastic processes in Theorems 7.6 and 7.7 of [1] on the other. But the problem how much we can weaken the assumption of strict stability of the subordinand is open in many important cases including the α -stable $(0 < \alpha \le 1)$ subordinand with drift. Let $\alpha \in (0, 2]$. Under the condition of strictly α -semi-stabile subordinand with a span $b^{\frac{1}{\alpha}}$, inheritance of the class $L_m(b)$ property from subordinating to subordinated is known from Theorem 3.1 in [19]. This is given in Theorem 1.1 below. But it is not known whether the same statement of Theorem 1.1 is true if strictly α -semistable is replaced by α -semistable with drift for $\{X(t)\}$. Some related discussions are given in Section 4.

Theorem 1.1. If the subordinand $\{X(t)\}$ is strictly α -semistable with a span $b^{\frac{1}{\alpha}}$ and the subordinator $\{T(t)\}$ belongs to the class $L_m(b)$ on R, then the subordinated process $\{Y(t)\}$ belongs to $L_m(b^{\frac{1}{\alpha}})$.

This theorem is generalized to the operator version in Corollary 2.2 of this paper, which is a special case of Theorem 2.1 in Section 2. Theorem 2.1 is an extension of known results from [5] to the case where the subordinator $\{T(t)\}$ is in $L_m(b)$ on R. The proof of Theorem 2.1 is given in Section 3 after some preparatory. Corollary 2.2 is proved as a consequence of Theorem 2.1.

2. Results

We start with the following notation we are going to use in this paper.

 $\mathcal{P}(R^d)$ and $I(R^d)$ are, respectively, the collection of probability measures (distributions) defined on R^d and collection of infinitely divisible distributions defined on R^d ; $\hat{\mu}(z)$, $z \in R^d$ is the characteristic function of $\mu \in \mathcal{P}(R^d)$; $\mathcal{L}(X)$ is the distribution of a random variable or vector X; $M_J^+(R^d)$ is the class of all $d \times d$ matrices all of whose eigenvalues have positive real parts in J; $\mathcal{B}(S)$ is the collection of Borel sets in S for a set $S \subset R^d$; Q^{\top} is the transposed matrix of $Q \in M_{(0,\infty)}^+(R^d)$; I is the identity matrix; $b^Q = \sum_{n=0}^{\infty} (n!)^{-1} (\log b)^n Q^n$ for b > 0 and $Q \in M_{(0,\infty)}^+(R^d)$.

Fix b and $Q \in M_{(0,\infty)}^+(\mathbb{R}^d)$. A distribution $\mu \in \mathcal{P}(\mathbb{R}^d)$ is called (b,Q)-semi-selfdecomposable or operator semi-selfdecomposable, if there are some b and μ_b

 $\in I(\mathbb{R}^d)$ satisfying

(2.1)
$$\hat{\mu}(z) = \hat{\mu}(b^{-Q^{\top}}z)\hat{\mu}_b(z), \qquad z \in R^d.$$

In the case when Q=I, this is the usual semi-selfdecomposability. The class of all (b,Q)-semi-selfdecomposable distributions satisfying (2.1) is denoted by $L_0(b,Q)$. For $m\geq 1$, the class $L_m(b,Q)$ is defined to be the class of $\mu\in L_0(b,Q)$ such that, for some b, there exists $\mu_b\in L_{m-1}(b,Q)$ satisfying (2.1). These classes were introduced and characterized by Maejima, Sato, and Watanabe [12, 13]. For any m, the class $L_m(Q)$ is defined to be the class of distributions on R^d such that, for every b>0, $\mu\in L_m(b,Q)$. μ in $L_0(Q)$ is called Q-selfdecomposable. In the case when Q=I, this is the usual selfdecomposability. Let $L_m(I)=L_m$ and $L_m(b,I)=L_m(b)$ for some b.

A Lévy process $\{Z(t)\}$ on \mathbb{R}^d belongs to $L_m(b,Q)$ or $L_m(Q)$ if \mathcal{L} (Z(1)) belongs to $L_m(b,Q)$ or $L_m(Q)$, respectively.

Fix b and $Q \in M_{(0,\infty)}^+(R^d)$. A distribution $\mu \in \mathcal{P}(R^d)$ is called (b,Q)-semi-stable (operator semi-stable with exponent Q) if $\mu \in I(R^d)$ and there are b and $c \in R^d$ such that

(2.2)
$$\hat{\mu}^b(z) = \hat{\mu}(b^{Q^{\top}}z)e^{i\langle c,z\rangle}, \qquad z \in R^d.$$

Moreover, a distribution $\mu \in \mathcal{P}(\mathbb{R}^d)$ is called *strictly* (b, Q)-semi-stable (strictly operator semi-stable with exponent Q) if $\mu \in I(\mathbb{R}^d)$ and there is b such that

$$\hat{\mu}^b(z) = \hat{\mu}(b^{Q^{\top}}z), \qquad z \in R^d.$$

The class of all (b,Q)-semi-stable distributions satisfying (2.2) and the class of all strictly (b,Q)-semi-stable distributions satisfying (2.3) are denoted by OSS(b,Q) and SOSS(b,Q), respectively. We note that $OSS(b,Q) = OSS(b^{-1},Q)$ and $SOSS(b,Q) = SOSS(b^{-1},Q)$. See [8] and [10] for a review on operator semi-stable distributions and see [4] for a review on strictly operator semi-stable distributions. In this case when $\mu \in OSS(b,\frac{1}{\alpha}I)$ or $\mu \in SOSS(b,\frac{1}{\alpha}I)$, this μ is the usual α -semi-stable distribution having a span $b^{\frac{1}{\alpha}}$ or strictly α -semi-stable distribution having a span $b^{\frac{1}{\alpha}}$, respectively. See Section 14 in [17] for a review on α -semi-stable distributions. A distribution μ is called Q-stable or strictly Q-stable if, for every b>0, $\mu \in OSS(b,Q)$ or $\mu \in SOSS(b,Q)$, respectively. The class of all Q-stable distribution is denoted by S(Q).

We define $L_{\infty}(b,Q) = \bigcap_{m < \infty} L_m(b,Q)$. Then

$$(2.4) L_0(b,Q) \supset L_1(b,Q) \supset \cdots \supset L_{\infty}(b,Q) \supset SOSS(b^{-1},Q).$$

This was shown by Maejima, Sato, and Watanabe [12, 13]. A distribution $\mu \in \mathcal{P}(\mathbb{R}^d)$ is called *completely* (b,Q)-semi-selfdecomposable or completely operator semi-selfdecomposable if $\mu \in L_{\infty}(b,Q)$.

A Lévy process $\{Z(t)\}$ is called selfdecomposable, (b,Q)-semi-selfdecomposable, strictly (b,Q)-semi-stable, (b,Q)-semi-stable, strictly Q-stable or Q-stable if $\mathcal{L}(Z(1))$ is selfdecomposable, (b,Q)-semi-selfdecomposable, strictly (b,Q)-semi-stable, (b,Q)-semi-stable, strictly Q-stable or Q-stable, respectively.

Throughout this paper, let $Q \in M_{(0,\infty)}^+(\mathbb{R}^d)$ and $b_j > 1$ for j = 1,2. Our results are as follows.

Theorem 2.1. Let $\{X(t)\}$ be strictly (b_1, Q) -semi-stable on \mathbb{R}^d and let $\{T(t)\}$ be in $L_m(b_2)$ on \mathbb{R} . If $\log b_1/\log b_2$ is a rational number, then the subordinated process $\{Y(t)\}$ belongs to $L_m(b,Q)$ for some b.

Corollary 2.2. Let $\{X(t)\}$ be strictly (b,Q)-semi-stable on \mathbb{R}^d and let $\{T(t)\}$ be in $L_m(b)$ on \mathbb{R} . Then the subordinated process $\{Y(t)\}$ belongs to $L_m(b,Q)$.

Remark 2.3. Let $\{X(t)\}$ be the usual α -semi-stable process having a span $b^{\frac{1}{\alpha}}$ in Corollary 2.2. In this case, by noticing that $L_m(b, \frac{1}{\alpha}I) = L_m(b^{\frac{1}{\alpha}})$, Corollary 2.2 shows that $\{Y(t)\}$ is in $L_m(b^{\frac{1}{\alpha}})$, which is given in Theorem 1.1. This fact is extended to the general subordination in Theorem 3.1 of [19].

Remark 2.4. Let replace " $L_m(b_2)$ " by " L_m ", $m \ge 0$ for $\{T(t)\}$ in Theorem 2.1. Then, the statement is exactly Theorem 1.1 of [5]. In this case, we do not need the additional condition that $\log b_1/\log b_2$ is a rational number. Under this additional condition in Theorem 2.1, strict (operator) semi-stability is inherited from the subordinator to the subordinated in subordination of a strictly (operator) semi-stabile process. See Proposition 3.1 of [6] (Corollary 1.3 of [5]). Without assuming this additional condition, it is not true. See Example in [5].

3. Proofs of results

We use the Lévy representation (A, ν, γ) of $\mu \in I(\mathbb{R}^d)$ in the sense that

$$\hat{\mu}(z) = \exp\left[i\langle \gamma, z \rangle - \frac{1}{2}\langle Az, z \rangle + \int_{R^d} G(z, x)\nu(dx)\right]$$

and

$$G(z,x) = e^{i\langle z,x\rangle} - 1 - i\langle z,x\rangle I_{\{|x|<1\}}$$

for $z \in R^d$, where A is a symmetric nonnegative-definite operator on R^d , ν is a measure on R^d satisfying $\nu(\{0\}) = 0$ and $\int_{R^d - \{0\}} (|x|^2 \wedge 1) \nu(dx) < \infty$, and $\gamma \in R^d$. Here $I_D(x)$ is the indicator function of D. A Lévy process $\{Z(t)\}$ is said to have the Lévy representation (A, ν, γ) if $\mathcal{L}(Z(1))$ has the Lévy representation (A, ν, γ) . We note that these A, ν , and γ are uniquely determined by μ , A is called the Gaussian variance and ν is called the Lévy measure of μ .

Let $\{X(t)\}$ be strictly (b,Q)-semi-stable with Lévy representation (A,ν,γ) . It is a necessary and sufficient condition for $\mu \in \mathcal{P}(R^d)$ with the Lévy representation (A,ν,γ) to be in SSOS(b,Q) for some b that A and ν are expressed as

$$\langle Ab^{Q^{\top}}z, b^{Q^{\top}}z \rangle = b\langle Az, z \rangle, \qquad z \in \mathbb{R}^d$$

and

(3.2)
$$\nu(b^Q E) = b^{-1} \nu(E)$$

for every $E \in \mathcal{B}(\mathbb{R}^d - \{0\})$.

For any signed measure σ , b and $E \in \mathcal{B}(R^d - \{0\})$, define $\phi_{b,Q,\sigma}(E) = \sigma(E) - \sigma(b^Q E)$, where $b^Q E = \{b^Q x : x \in E\}$. Let $\phi_{b,Q,\sigma}^j$ be the j-th iteration of $\phi_{b,Q,\sigma}$. Then, for any $E \in \mathcal{B}(R^d - \{0\})$, the equation (3.2) leads to

(3.3)
$$\phi_{b,Q,\nu}^{j}(E) = (1 - b^{-1})^{j}\nu(E)$$
 for $j = 1, \dots, m+1$.

Maejima, Sato, and Watanabe showed the following in Theorem 3.1 of [12]. It is a necessary and sufficient condition for $\mu_0 \in \mathcal{P}(\mathbb{R}^d)$ with Lévy measure ν_0 to be in $L_m(b,Q)$ for some b that ν_0 is expressed as

(3.4)
$$\phi_{b,Q,\nu_0}^j(E) \ge 0 \quad \text{for } j = 1, \dots, m+1.$$

By combining (3.1) and (3.2), this leads to the following:

Lemma 3.1. Let l be a positive integer. Then, for each land m,

$$SOSS(b,Q) \subseteq SOSS(b^l,Q)$$
 and $L_m(b) \subseteq L_m(b^l)$.

For a real-valued function k(s) defined on $(0, \infty)$ and b, define as $\psi_b k(s) = k(s) - k(bs)$. For $\epsilon > 0$, let $\Delta_\epsilon \psi_b^j k(s) = \psi_b^j k(s) - \psi_b^j k(s+\epsilon)$, where $\psi_b^j k(s)$ is the j-th iteration of the operator $\psi_b k(s)$. In the following, we are using the words increase and decrease in the weak sense.

Following Theorem 30.1 of [17], it is well-known that $\{T(t)\}$ is a subordinator with the Lévy representation $(A^{\natural}, \rho, \beta)$ and $\kappa = \mathcal{L}(T(1))$ if and only if

$$\hat{\kappa}(z) = \exp\left[\int_{(0,\infty)} (e^{izs} - 1)\rho(ds) + i\beta_0 z\right]$$

with $\beta_0 = \beta - \int_{(0,1]} s\rho(ds) \ge 0$. Combining this, Theorem 4.1 and Theorem 4.2 in [11], we have the following:

Lemma 3.2. Let $\{T(t)\}$ be a subordinator in $L_m(b)$. Then the Lévy measure ρ has the expression

$$\rho(E) = C \int_0^\infty I_E(s) d\{-k(s)\}, \quad E \in \mathcal{B}((0,\infty)),$$

where C is a constant and k(s) is right continuous, decreasing in s, nonnegative, $\lim_{s\to\infty} k(s) = 0$ and $\Delta_{\epsilon} \psi_b^j k(s) \geq 0$ for every $\epsilon > 0$, s > 0 and $j = 1, \ldots, m+1$

Lemma 3.3. Let $\{Z(s)\}$ be a Lévy process on \mathbb{R}^d . Let C and k(s) be as in Lemma 3.2. Then, for every $E \in \mathcal{B}(\mathbb{R}^d - \{0\})$ and $j = 1, \ldots, m+1$,

$$\int_{(0,\infty)} \mu^s(E) d\{\psi_b^j k(s) - \psi_b^j k(bs)\} \le 0, \quad where \quad \mu^s = \mathcal{L}(Z(s)).$$

Proof. Using the fact that $\Delta_{\epsilon} \psi_b^j k(s) \geq 0$ for every $\epsilon > 0$, s > 0 and $j = 1, \ldots, m+1$, we see that

$$-\int_{(0,\infty)} \mu^s(E) d\{\psi_b^j k(s) - \psi_b^j k(bs)\} \ge 0.$$

Let $\{X(t)\}$ be a Lévy process with the Lévy presentation (A, ν, γ) on R^d and $\{T(t)\}$ be a subordinator with the Lévy representation $(A^{\natural}, \rho, \beta)$ on R. Then, from Theorem 30.1 of [17], the subordinated process $\{Y(t)\} = \{X(T(t))\}$ is a Lévy process with the Lévy representation $(A^{\sharp}, \nu^{\sharp}, \gamma^{\sharp})$ on R^d such that

$$A^{\sharp} = \beta_0 A$$
,

(3.5)
$$\nu^{\sharp}(E) = \beta_0 \nu(E) + \int_{(0,\infty)} \mu^s(E) \rho(ds), \quad E \in \mathcal{B}(\mathbb{R}^d - \{0\}),$$
$$\gamma^{\sharp} = \beta_0 + \int_{(0,\infty)} \rho(ds) \int_{|x| \le 1} x \mu^s(dx),$$

where $\mu^s = \mathcal{L}(X(s))$.

Proof of Theorem 2.1. Let $\{X(t)\}$, $\{T(t)\}$ and $\{Y(t)\}$ be as above.

Let $\log b_1/\log b_2$ be a rational number. Then there exist some positive integers M and N such that $b_1^M = b_2^N$. Let $b_2^N = b$, then by (3.5), we see that

$$\nu^{\sharp}(b^{Q}E) = \beta_{0}\nu(b^{Q}E) + \int_{(0,\infty)} \mu^{s}(b^{Q}E)\rho(ds), \quad E \in \mathcal{B}(R^{d} - \{0\}).$$

Let $\{X(t)\}$ be strictly (b_1, Q) -semi-stable. Then by using (2.3) and Lemma 3.1, we have that, for every $E \in \mathcal{B}(\mathbb{R}^d - \{0\})$ and s > 0, $\mu^s(b^Q E) = \mu^{sb^{-1}}(E)$.

For m = 0, we suppose that $\{T(t)\}$ is in $L_0(b_2)$. Then, by Lemma 3.1 and Lemma 3.2, we see that

$$\int_{(0,\infty)} \mu^s(b^Q E) \rho(ds) = C \int_{(0,\infty)} \mu^{sb^{-1}}(E) d\{-k(s)\}$$
$$= C \int_{(0,\infty)} \mu^s(E) d\{-k(sb)\}.$$

From the facts that $\nu(b^Q E) = b^{-1}\nu(E)$ and Lemma 3.3, this shows that, for some b, $\phi_{b,Q,\nu^{\sharp}}(E) \geq 0$, which means that the Lévy measure of $\{Y(t)\}$, ν^{\sharp} satisfies the condition to be in $L_0(b,Q)$ by (3.4).

Next, for $m \geq 1$, we suppose that $\{T(t)\}$ is in $L_m(b_2)$. This means that

$$\Delta_{\epsilon} \psi_h^j k(s) \ge 0, \quad \forall \epsilon > 0, \quad j = 1, \dots, m+1.$$

This, combined with the equation (3.3) and Lemma 3.3, leads to

(3.6)
$$\phi_{b,Q,\nu^{\sharp}}^{j}(E) \ge 0$$
 for $j = 1, \dots, m+1$,

which shows that, by (3.4), the Lévy measure of $\{Y(t)\}$, ν^{\sharp} satisfies the condition to be in $L_m(b,Q)$ for $m \geq 1$.

For $m = \infty$, this assertion is a consequence of that for finite m.

Using (2.4), we note that, A^{\sharp} has the same the property of Gaussian matrix from the class $L_{\infty}(b,Q)$. Combining this and (3.6), we see that $\{Y(t)\}$ belongs to $L_m(b,Q)$ for $m \geq 0$.

Proof of Corollary 2.2. Let $\{X(t)\}$ and $\{T(t)\}$ be the processes in Corollary 2.2. Let M, N and b_i be as above for i=1,2. Then we see that M=N=1 and $b_1=b_2=b$ in the above proof. This says that $\{Y(t)\}$ belongs to $L_m(b,Q)$ for $m \geq 0$.

4. Remark

In this paper, we treat the case where $\mathcal{L}(X(1)) \in SOSS(b,Q)$. In the simple case where $Q = \frac{1}{\alpha}I$, let $SOSS(b,Q) = SS_0(\alpha)$, $OSS(b,Q) = SS(\alpha)$ and $S(Q) = S(\alpha)$ for some b. Then $\alpha \in (0,2]$ and S(2) = SS(2). We recall that α is uniquely determined by $\mathcal{L}(X(1))$ (see [3]). Even in case where $\mathcal{L}(X(1)) \in SS(\alpha)$ and $\mathcal{L}(X(1)) \notin SS_0(\alpha)$ for $\alpha \in (0,2)$, we do not know whether $\mathcal{L}(Y(1)) \in L_0(b)$ for $\mathcal{L}(T(1)) \in L_0$. We note that the Brownian motion is strictly 2-stable and Brownian motions with drift are stable but not strictly 2-stable. Suppose that $\{X(t)\}\$ is an α -stable process on R, which is not strictly stable. Halgreen [7] asked a question whether $\mathcal{L}(Y(1)) \in L_0$ for $\mathcal{L}(X(1)) \in S(2)$ and $\mathcal{L}(T(1)) \in L_0$. After 22 years, Sato affirmatively settled this question in Theorem 1.1 of [18]. He [18] raised a question whether this remains true for $\mathcal{L}(X(1)) \in S(\alpha)$ with $0 < \alpha < 2$. For $\alpha \in (1,2)$, Kozubowski [9] pointed out that this is not true. But, for $\alpha \in (0,1]$, it is not known whether $\mathcal{L}(Y(1)) \in L_0$ for $\mathcal{L}(X(1)) \in S(\alpha)$ and $\mathcal{L}(T(1)) \in L_0$. Sato [19] again raised a question whether $\mathcal{L}(Y(1)) \in L_m$ for $\mathcal{L}(X(1)) \in S(\alpha)$ with $\alpha \in (0,2]$ and $\mathcal{L}(T(1)) \in L_m$. He [19] also raised a question whether the above statement is true with " L_0 " replaced by " $L_0(b)$ ".

Acknowledgement. The authors are would like to express our deepest thanks to a referee. He/She carefully read the manuscript and gave useful comments in the presentation of this paper.

References

- O. E. Barndorff-Nielsen, M. Maejima, and K. Sato, Infinite divisibility for stochastic processes and time change, J. Theoret. Probab. 19 (2006), no. 2, 411–446.
- [2] O. E. Barndorff-Nielsen, J. Pedersen, and K. Sato, Multivariate subordination, self-decomposability and stability, Adv. in Appl. Probab. 33 (2001), no. 1, 160–187.
- [3] G. S. Choi, Criteria for recurrence and transience of semistable processes, Nagoya Math. J. 134 (1994), 91–106.
- [4] ______, Characterization of strictly operator semi-stable distributions, J. Korean Math. Soc. 38 (2001), no. 1, 101–123.
- [5] ______, Some results on subordination, selfdecomposability and operator semi-stability, Statist. Probab. Lett. 78 (2008), no. 6, 780–784.
- [6] G. S. Choi, S. Y. Joo, and Y. K. Kim, Subordination, self-decomposability and semistability, Commun. Korean Math. Soc. 21 (2006), no. 4, 787–794.
- [7] C. Halgreen, Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions, Z. Wahrsch. Verw. Gebiete 47 (1979), no. 1, 13–17.
- [8] R. Jajte, Semi-stable probability measures on R^N, Studia Math. **61** (1977), no. 1, 29–39.
- T. J. Kozubowski, A note on self-decomposability of stable process subordinated to self-decomposable subordinator, Statist. Probab. Lett. 73 (2005), no. 4, 343–345; Statist. Probab. Lett. 74 (2005), no. 1, 89–91.

- [10] A. Luczak, Operator semistable probability measures on R^N, Colloq. Math. 45 (1981), no. 2, 287–300; Corrigenda, Colloq. Math. 52 (1987), no. 1, 167–169.
- [11] M. Maejima and Y. Naito, Semi-selfdecomposable distributions and a new class of limit theorems, Probab. Theory Related Fields 112 (1998), no. 1, 13–31.
- [12] M. Maejima, K. Sato, and T. Watanabe, Operator semi-selfdecomposability, (C, Q)decomposability and related nested classes, Tokyo J. Math. 22 (1999), no. 2, 473–509.
- [13] ______, Completely operator semi-selfdecomposable distributions, Tokyo J. Math. 23 (2000), no. 1, 235–253.
- [14] ______, Distributions of selfsimilar and semi-selfsimilar processes with independent increments, Statist. Probab. Lett. 47 (2000), no. 4, 395–401.
- [15] J. Pedersen and K. Sato, Cone-parameter convolution semigroups and their subordination, Tokyo J. Math. 26 (2003), no. 2, 503–525.
- [16] ______, Relations between cone-parameter Levy processes and convolution semigroups, J. Math. Soc. Japan 56 (2004), no. 2, 541–559.
- [17] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999.
- [18] ______, Subordination and self-decomposability, Statist. Probab. Lett. **54** (2001), no. 3, 317–324.
- [19] ______, Selfdecomposability and semi-selfdecomposability in subordination of coneparameter convolution semigroups, Tokyo J. Math. 32 (2009), no. 1, 81–90.

GYEONG SUK CHOI
DEPARTMENT OF MATHEMATICS
KANGWON NATIONAL UNIVERSITY
CHUNCHEON 200-701, KOREA
E-mail address: gschoi@kangwon.ac.kr

YUN KYONG KIM
DEPARTMENT OF INFORMATION & COMMUNICATION ENGINEERING
DONGSHIN UNIVERSITY
CHONNAM 520-714, KOREA
E-mail address: ykkim@dsu.ac.kr

SANG YEOL JOO DEPARTMENT OF MATHEMATICS KANGWON NATIONAL UNIVERSITY CHUNCHEON 200-701, KOREA E-mail address: syjoo@kangwon.ac.kr