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A NOTE ON SEMI-SELFDECOMPOSABILITY AND
OPERATOR SEMI-STABILITY IN SUBORDINATION

GYEONG Suk CHol, YUN KyoNng KiM, AND SANG YEOL JOO

ABSTRACT. Some results on inheritance of operator semi-selfdecompos-
ability and its decreasing subclass property from subordinator to subor-
dinated in subordination of a Lévy process are given. A main result is
an extension of results of [5] to semi-selfdecomposable subordinator. Its
consequence is discussed.

1. Introduction

We use the terminology in Sato’s book [17]. Let m be a nonnegative integer
and let b > 1. A sequence of strictly decreasing subclasses L,, (b) of the class of
infinitely divisible distributions was introduced and characterized in Maejima
and Naito [11]. A description of the classes L,,(b) is given in Section 2. A
distribution in the class Lo(b) is called semi-selfdecomposable by Maejima and
Naito [11]. This notion is a natural extension of selfdecomposability on the one
hand and semi-stability on the other. Its importance comes from mathematical
physics. For a relation of semi-selfdecomsability with diffusions on Sierpinski
gaskets, see [14] and references therein. Later, Maejima, Sato, and Watanabe
[12, 13] extended this notion to that of operator semi-selfdecomposability. We
note that operator semi-selfdecomposability offers higher flexibility in stochas-
tic modeling then semi-selfdecomposability.

It is an interesting question to see whether operator semi-selfdecomposability
or the operator version of the class L,,(b) property is inherited under time
change. In this paper, this question is considered in relation to subordination
of a Lévy process.

Subordination of a Lévy process is defined as follows.

Let {T'(t)} be an increasing Lévy process on R and {X (t)} be a Lévy process
on R? independent of {T'(t)}. Here R? is the d-dimensional Euclidean space
with the inner product (x,y) for x, y. Subordination is a transformation of
{X(t)} to a new process {Y(¢)} defined by composition as Y (t) = X(T'(t))
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through random time change by {T'(t)}. Processes {X (¢)}, {T(t)} and {Y (¢)}
are respectively called subordinand, subordinator (subordinating) and subor-
dinated.

The importance of subordination is increasing in mathematical finance. See
[1] and references given there. Particulary, interesting models including some
financial models are given in [2]. Recently, this notion was extended to the
general case in [15, 16].

From Theorem 6.1 of [2], it is well known that in subordination of strict sta-
bility, the subclasses L, of the class Ly of selfdecomposable distributions are
inherited from subordinator to subordinated. This is extended to the general
case in Theorem 3.1 of [19] on the one hand, and in the case where the subordi-
nator {T'(¢)} is a new selfdecomposability of stochastic processes in Theorems
7.6 and 7.7 of [1] on the other. But the problem how much we can weaken the
assumption of strict stability of the subordinand is open in many important
cases including the a-stable (0 < o < 1) subordinand with drift. Let o € (0, 2].
Under the condition of strictly a-semi-stabile subordinand with a span bi, in-
heritance of the class L,,(b) property from subordinating to subordinated is
known from Theorem 3.1 in [19]. This is given in Theorem 1.1 below. But
it is not known whether the same statement of Theorem 1.1 is true if strictly
a-semistable is replaced by a-semistable with drift for {X(¢)}. Some related
discussions are given in Section 4.

Theorem 1.1. If the subordinand {X(t)} is strictly a-semistable with a span
ba and the subordinator {T(t)} belongs to the class Ly,(b) on R, then the
subordinated process {Y (t)} belongs to Lu, (b= ).

This theorem is generalized to the operator version in Corollary 2.2 of this
paper, which is a special case of Theorem 2.1 in Section 2. Theorem 2.1 is an
extension of known results from [5] to the case where the subordinator {T'(¢)}
is in L,,(b) on R. The proof of Theorem 2.1 is given in Section 3 after some
preparatory. Corollary 2.2 is proved as a consequence of Theorem 2.1.

2. Results

We start with the following notation we are going to use in this paper.

P(R?) and I(R?) are, respectively, the collection of probability measures
(distributions) defined on R? and collection of infinitely divisible distributions
defined on R%; i(z), 2 € R? is the characteristic function of u€ P(R4); L(X)
is the distribution of a random variable or vector X; M} (R?) is the class of all
d x d matrices all of whose eigenvalues have positive real parts in J; B(S) is
the collection of Borel sets in S for a set S C R% Q7 is the transposed matrix
of @ € M(}L)yoo)(Rd); I is the identity matrix; b9 = Y7 (n!)~!(logb)"Q" for
b>0and Q € M .\ (R?).

Fix b and Q € ('5700)(Rd). A distribution p € P(R?) is called (b, Q)-semi-
selfdecomposable or operator semi-selfdecomposable, if there are some b and p
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€ I(RY) satisfying
(2.1) fi(z) = a0~ 2)hin(z),  z€RY

In the case when Q = I, this is the usual semi-selfdecomposability. The class
of all (b, Q)-semi-selfdecomposable distributions satisfying (2.1) is denoted by
Lo(b, Q). For m > 1, the class L., (b, Q) is defined to be the class of u € Lo(b, Q)
such that, for some b, there exists up € Ly,—1(b, Q) satisfying (2.1). These
classes were introduced and characterized by Maejima, Sato, and Watanabe
[12, 13]. For any m, the class L,,(Q) is defined to be the class of distributions
on R? such that, for every b > 0, u € L, (b,Q). p in Lo(Q) is called Q-
selfdecomposable. In the case when Q = I, this is the usual selfdecomposability.
Let L, (I) = Ly, and Ly, (b, I) = L, (b) for some b.

A Lévy process {Z(t)} on R? belongs to L,,(b,Q) or L, (Q) if £ (Z(1))
belongs to Ly, (b, Q) or L,,(Q), respectively.

Fix b and Q € M(J{),OO)(Rd). A distribution p € P(R?) is called (b, Q)-semi-
stable (operator semi-stable with exponent Q) if p € I(R?) and there are b and
¢ € R? such that

(2.2) fb(z) = @ 2)eie? e R

Moreover, a distribution u € P(RY) is called strictly (b, Q)-semi-stable (strictly
operator semi-stable with exponent Q) if u € I(R?) and there is b such that

(2.3) ib(z) = ab?" z),  ze R

The class of all (b, Q)-semi-stable distributions satisfying (2.2) and the class
of all strictly (b, Q)-semi-stable distributions satisfying (2.3) are denoted by
0SS (b,Q) and SOSS(b, Q), respectively. We note that 0SS (b, Q) = OSS (b1,
Q) and SOSS(b, Q) = SOSS(b—1, Q). See [8] and [10] for a review on operator
semi-stable distributions and see [4] for a review on strictly operator semi-stable
distributions. In this case when € OSS(b, £1) or € SOSS(b, L1), this p is
the usual a-semi-stable distribution having a span ba or strictly a-semi-stable
distribution having a span bi, respectively. See Section 14 in [17] for a review
on a-semi-stable distributions. A distribution p is called @Q-stable or strictly
Q-stable if, for every b > 0, p € OSS(b,Q) or p € SOSS(b,Q), respectively.
The class of all @-stable distribution is denoted by S(Q).
We define Lo (b, Q) = ,,c00 Lm(b, Q). Then

(2.4) Lo(b,Q) D L1(b,Q) D --- D Loo(b,Q) D SOSS(b™ 1, Q).

This was shown by Maejima, Sato, and Watanabe [12, 13]. A distribution p €
P(R?) is called completely (b, Q)-semi-selfdecomposable or completely operator
semi-selfdecomposable if © € Loo(b, Q).

A Lévy process {Z(t)} is called selfdecomposable, (b, Q)-semi-selfdecompos-
able, strictly (b, Q)-semi-stable, (b, Q)-semi-stable, strictly Q-stable or Q-stable
it £(Z(1)) is selfdecomposable, (b, Q)-semi-selfdecomposable, strictly (b, Q)-
semi-stable, (b, Q)-semi-stable, strictly @-stable or )-stable, respectively.
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Throughout this paper, let Q € M(Jg OQ)(R"l) and b; > 1 for j = 1,2. Our
results are as follows.

Theorem 2.1. Let {X(t)} be strictly (b, Q)-semi-stable on R* and let {T(t)}
be in Ly, (b2) on R. Iflogby/logbs is a rational number, then the subordinated
process {Y (t)} belongs to Ly, (b, Q) for some b.

Corollary 2.2. Let {X(t)} be strictly (b, Q)-semi-stable on R* and let {T(t)}
be in Ly, (b) on R. Then the subordinated process {Y (t)} belongs to L, (b, Q).

Remark 2.3. Let {X(t)} be the usual a-semi-stable process having a span ba
in Corollary 2.2. In this case, by noticing that L, (b, 2I) = Ly, (b=), Corollary
2.2 shows that {Y'(£)} is in Ly, (b= ), which is given in Theorem 1.1. This fact
is extended to the general subordination in Theorem 3.1 of [19].

Remark 2.4. Let replace “Ly, (b2)” by “Ly,”, m > 0 for {T'(¢)} in Theorem 2.1.
Then, the statement is exactly Theorem 1.1 of [5]. In this case, we do not need
the additional condition that logb;/logbs is a rational number. Under this
additional condition in Theorem 2.1, strict (operator) semi-stability is inher-
ited from the subordinator to the subordinated in subordination of a strictly
(operator) semi-stabile process. See Proposition 3.1 of [6] (Corollary 1.3 of [5]).
Without assuming this additional condition, it is not true. See Example in [5].

3. Proofs of results

We use the Lévy representation (A, v,7) of u € I(R?) in the sense that

A . 1
i) = exp lifn, 2) — 5 (A2 )+ |

G(z,x)y(dx)}
and ‘
G(z,z) = etz _ 1 — i(z,a:ﬂ“w‘gl}

for z € R?, where A is a symmetric nonnegative-definite operator on R?, v is
a measure on RY satisfying v({0}) = 0 and fRd—{o}(mQ A Dv(dr) < oo, and
v € R%. Here Ip(x) is the indicator function of D. A Lévy process {Z(t)} is said
to have the Lévy representation (A, v, ) if £(Z(1)) has the Lévy representation
(A,v,7y). We note that these A, v, and « are uniquely determined by u, A is
called the Gaussian variance and v is called the Lévy measure of p.

Let {X(t)} be strictly (b, Q)-semi-stable with Lévy representation (4, v, 7).
It is a necessary and sufficient condition for pu€ P(R?) with the Lévy repre-
sentation (A, v, ) to be in SSOS(b, Q) for some b that A and v are expressed
as

(3.1) (Ab? 2,09 2) = b(Az,2),  z€ R
and
(3.2) v(b?E) = b~ 'w(E)

for every E € B(R? —{0}).
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For any signed measure o, b and E € B(R? — {0}), define ¢} g (E) =
o(E) — o(b9FE), where b°FE = {b9x : z € E}. Let $3.0., be the j-th iteration
of ¢p.g.o- Then, for any E € B(R? —{0}), the equation (3.2) leads to

(3.3) houn(BE)=0-b""Yu(E) forj=1,...m+1

Maejima, Sato, and Watanabe showed the following in Theorem 3.1 of [12].
It is a necessary and sufficient condition for po€ P(R?) with Lévy measure v
to be in Ly, (b, Q) for some b that v is expressed as

(3.4) row (E) =0 forj=1,.. m+L
By combining (3.1) and (3. 2), this leads to the following:

Lemma 3.1. Letl be a positive integer. Then, for each land m,
SOSS(b,Q) C SOSS(H,Q) and Ly, (b) C Ly, (b).

For a real-valued function k(s) defined on (0,00) and b, define as ¢pk(s) =
k(s) — k(bs). For € > 0, let Aplk(s) = ¢lk(s) — ¥lk(s + €), where ¢]k(s) is
the j-th iteration of the operator ¥pk(s). In the following, we are using the
words increase and decrease in the weak sense.

Following Theorem 30.1 of [17], it is well-known that {T'(¢)} is a subordinator
with the Lévy representation (A%, p, ) and k = £(T(1)) if and only if

R(z) = exp

| e = 1ptds) + iz
(0,00)

with By = 8 — f(o 1 sp(ds) > 0. Combining this, Theorem 4.1 and Theorem 4.2
in [11], we have the following:

Lemma 3.2. Let {T(t)} be a subordinator in L,,(b). Then the Lévy measure
p has the expression

mmzcém@@ﬂ4wm E  B((0, ).

where C' is a constant and k:(s) is Tight continuous, decreasing in s, nonnegative,
limg_o0 k(s) =0 and Acplk(s) >0 for everye >0,s >0 andj=1,...,m+1

Lemma 3.3. Let {Z(s)} be a Lévy process on Re. Let C and k(s) be as in
Lemma 3.2. Then, for every E € B(R* —{0}) and j =1,...,m +1,

/(0 )MS(E)d{wgk(s) —hlk(bs)} <0, where pu* = L(Z(s)).

Proof. Using the fact that Aed)ik(s) > 0 for every € > 0, s > 0 and j =
1,...,m+ 1, we see that

_/(0 )MS(E)d{q/)gk(s) — i k(bs)} > 0.
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Let {X(t)} be a Lévy process with the Lévy presentation (4, v,v) on R% and
{T(t)} be a subordinator with the Lévy representation (A%, p,3) on R. Then,
from Theorem 30.1 of [17], the subordinated process {Y (t)} = {X(T'(¢))} is a
Lévy process with the Lévy representation (A%, v#,v*) on R? such that

AF = oA,

(35) V() = fo(E) + /( ), B € B(RY ~ (0))

t= d *(d
Y 504-/(0700) p(ds) /z<1~w (dz),
where p® = L(X(s)).

Proof of Theorem 2.1. Let {X (¢)}, {T(¢)} and {Y (¢)} be as above.
Let log by /log ba be a rational number. Then there exist some positive inte-
gers M and N such that b = bY. Let b) = b, then by (3.5), we see that

H(BPE) = Bov(bF) +/ )us(bQE)p(ds), E € B(R* — {0}).
(0,00
Let {X (t)} be strictly (b1, Q)-semi-stable. Then by using (2.3) and Lemma 3.1,
we have that, for every E € B(R? — {0}) and s > 0, u*(b9E) = pu* ' (E).
For m = 0, we suppose that {T(¢)} is in Lo(b2). Then, by Lemma 3.1 and
Lemma 3.2, we see that

/ WORE)pds) = C [ o (B)d{—k(s))
(0,00) (0,00)

C w’(E)d{—k(sb)}.

(0,00)
From the facts that v(b?E) = b~'v(E) and Lemma 3.3, this shows that, for
some b, ¢y o,+(E) > 0, which means that the Lévy measure of {Y ()}, v/*
satisfies the condition to be in Lo(b, Q) by (3.4).

Next, for m > 1, we suppose that {T'(¢)} is in L, (). This means that

Aplk(s) >0, VYe>0, j=1,....m+1.
This, combined with the equation (3.3) and Lemma 3.3, leads to
(3.6) i’QM(E) >0 forj=1,...,m+1,

which shows that, by (3.4), the Lévy measure of {Y (¢)}, v* satisfies the condi-
tion to be in L, (b, Q) for m > 1.

For m = oo, this assertion is a consequence of that for finite m.

Using (2.4), we note that, A* has the same the property of Gaussian matrix
from the class Lo (b, Q). Combining this and (3.6), we see that {Y (¢)} belongs
to Ly, (b, Q) for m > 0. O
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Proof of Corollary 2.2. Let {X ()} and {T'(t)} be the processes in Corollary
2.2. Let M, N and b; be as above for ¢ = 1,2. Then we see that M = N =1
and by = by = b in the above proof. This says that {Y(¢)} belongs to L,,(b, Q)
for m > 0. O

4. Remark

In this paper, we treat the case where £(X (1)) € SOSS(b, Q). In the sim-
ple case where Q@ = 11, let SOSS(b,Q) = SSy(ar), OSS(b,Q) = SS(a) and
S(Q) = S(a) for some b. Then a € (0,2] and S(2) = S5(2). We recall that « is
uniquely determined by £(X (1)) (see [3]). Even in case where £(X (1)) € SS(«)
and L(X (1)) ¢ SSo(«) for a € (0,2), we do not know whether L(Y (1)) € L (b)
for £L(T(1)) € Lo. We note that the Brownian motion is strictly 2-stable and
Brownian motions with drift are stable but not strictly 2-stable. Suppose that
{X(t)} is an a-stable process on R, which is not strictly stable. Halgreen [7]
asked a question whether £(Y (1)) € Lo for £(X (1)) € S(2) and L(T(1)) € Lo.
After 22 years, Sato affirmatively settled this question in Theorem 1.1 of [18].
He [18] raised a question whether this remains true for £(X (1)) € S(a) with
0 < o < 2. For a € (1,2), Kozubowski [9] pointed out that this is not true.
But, for o € (0, 1], it is not known whether £(Y (1)) € Lo for L(X(1)) € S(«)
and L(T'(1)) € Ly. Sato [19] again raised a question whether £(Y (1)) € L,
for £L(X (1)) € S(a) with o € (0,2] and L£(T(1)) € L,,. He [19] also raised a
question whether the above statement is true with “Ly” replaced by “Lg(b)”.
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