• Title/Summary/Keyword: Mathematical Programming

Search Result 538, Processing Time 0.033 seconds

Time Series Perturbation Modeling Algorithm : Combination of Genetic Programming and Quantum Mechanical Perturbation Theory (시계열 섭동 모델링 알고리즘 : 운전자 프로그래밍과 양자역학 섭동이론의 통합)

  • Lee, Geum-Yong
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.277-286
    • /
    • 2002
  • Genetic programming (GP) has been combined with quantum mechanical perturbation theory to make a new algorithm to construct mathematical models and perform predictions for chaotic time series from real world. Procedural similarities between time series modeling and perturbation theory to solve quantum mechanical wave equations are discussed, and the exemplary GP approach for implementing them is proposed. The approach is based on multiple populations and uses orthogonal functions for GP function set. GP is applied to original time series to get the first mathematical model. Numerical values of the model are subtracted from the original time series data to form a residual time series which is again subject to GP modeling procedure. The process is repeated until predetermined terminating conditions are met. The algorithm has been successfully applied to construct highly effective mathematical models for many real world chaotic time series. Comparisons with other methodologies and topics for further study are also introduced.

A Study on a Fuzzy Berth Assignment Programming Problem (퍼지 반박시정계획 문제에 관한 연구)

  • 금종수;이홍걸;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.4
    • /
    • pp.59-70
    • /
    • 1996
  • A berth assignment problem has a direct impact on assessment of charges made to ships and goods. In this paper, we concerned with of fuzzy mathematical programming models for a berth assignment problem to achieved an efficient berth operation in a fuzzy environment. In this paper, we focus on the berth assignment programming with fuzzy parameters which are based on personal opinions or subjective judgement. From the above point of view, assume that a goal and a constraint are given by fuzzy sets, respectively, which are characterized by membership functions. Let a fuzzy decision be defined as the fuzzy set resulting from the intersection of a goal and constraint. This paper deals with fuzziness in all parameters which are expressed by fuzzy numbers. A fuzzy parameter defined by a fuzzy number means a possibility distribution of the parameters. These fuzzy 0-1 integer programming problems are formulated by fuzzy functions whose concept is also called the extension principle. We deal with a berth assignment problem with triangular fuzzy coefficients and propose a branch and bound algorithm for solving the problem. We suggest three models of berth assignment to minimizing the objective functions such as total port time, total berthing time and maximum berthing time by using a revised Maximum Position Shift(MPS) concept. The berth assignment problem is formulated by min-max and fuzzy 0-1 integer programming. Finally, we gave the numerical solutions of the illustrative examples.

  • PDF

A Framework to Automate Reliability-based Structural Optimization based on Visual Programming and OpenSees

  • Lin, Jia-Rui;Xiao, Jian;Zhang, Yi
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.225-234
    • /
    • 2020
  • Reliability-based structural optimization usually requires designers or engineers model different designs manually, which is considered very time consuming and all possibilities cannot be fully explored. Otherwise, a lot of time are needed for designers or engineers to learn mathematical modeling and programming skills. Therefore, a framework that integrates generative design, structural simulation and reliability theory is proposed. With the proposed framework, various designs are generated based on a set of rules and parameters defined based on visual programming, and their structural performance are simulated by OpenSees. Then, reliability of each design is evaluated based on the simulation results, and an optimal design can be found. The proposed framework and prototype are tested in the optimization of a steel frame structure, and results illustrate that generative design based on visual programming is user friendly and different design possibilities can be explored in an efficient way. It is also reported that structural reliability can be assessed in an automatic way by integrating Dynamo and OpenSees. This research contributes to the body of knowledge by providing a novel framework for automatic reliability evaluation and structural optimization.

  • PDF

A Study on the Instructional Model utilizing Scratch for Introductory Programming Classes of SW-Major Students (SW전공자 프로그래밍 입문 수업의 스크래치 활용 수업 모형 연구)

  • KO, Kwangil
    • Convergence Security Journal
    • /
    • v.18 no.2
    • /
    • pp.59-67
    • /
    • 2018
  • The programming language is a core education area of software that is becoming increasingly important in the age of the fourth industrial revolution, but it requires mathematical knowledge and logical thinking skills, so that many local private university and college students with low basic skills are having difficulties learning it. This problem occasionally causes SW-major students to lose interest and confidence in their majors during the introductory course of programming languages; making them change their majors, or give up their studies. In this study, we designed an instructional model using Scratch for educating C-language which is a typical programming introductory language. To do this, we analyzed the concepts that can be trained by Scratch among the programming concepts supported by C-language, and developed the examples of Scratch for exercising the concepts. In addition, we designed an instructional model, by which the programming concepts are first learned through Scratch and then C-language is taught, and conducted an experiment on the SW-major freshman students of a local private university to verify the effectiveness of the model. In the situation where SW education is becoming common, we expect that this study will help programming language education of security IT students.

  • PDF

A study on investigation about the meaning and the research trend of computational thinking(CT) in mathematics education (수학교육에서 계산적 사고(Computational Thinking)의 의미 및 연구 동향 탐색)

  • Shin, Dongjo;Choi-Koh, Sangsook
    • The Mathematical Education
    • /
    • v.58 no.4
    • /
    • pp.483-505
    • /
    • 2019
  • Across the world, there is a movement to incorporate computational thinking(CT) into school curricula, and math is at the heart of this movement. This paper reviewed the meanings of CT based on the point of view of Jeanette Wing, and the trend of domestic and international studies that incorporated CT into the field of mathematics education was analyzed to provide implications for mathematics education and future research. Results indicated that the meaning of CT, defined by mainly computer educators, varied in their operationalization of CT. Although CT and mathematical thinking generally have common points that are oriented toward problem solving, there were differences in the way of abstraction that is central to the two thinking processes. The experimental studies on CT in the field of mathematics education focused mainly on the development of students' cognitive capacities and affective domains through programming(coding). Furthermore, the previous studies were mainly conducted on students in school, and the studies conducted in the context of higher education, including pre-service and in-service teachers, were insufficient. Implications for mathematics teacher educators and teacher education as well as the relationship between CT and mathematical thinking are discussed.

An object-oriented programming for the simulation of integrated gasoline engine/automatic transmission control (가솔린 엔진/자동변속기 통합제어 시뮬레이션을 위한 객체지향형 프로그래밍)

  • 양경진;홍금식;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.484-487
    • /
    • 1997
  • In this paper a simulation program for the powertrain control of a gasoline engine with automatic transmission is presented, The object-oriented programming approach has been pursued, and MATLAB/ SIMULINK was adopted for its environment. The purpose of the paper is to demonstrate the programmability of a control system in the object-oriented fashion so that the transferability of the objects is guaranteed. The program developed in the paper was applied to a gasoline engine and the mathematical models used in the paper were just adopted from the literature. It is shown that the simulation results and real experimental results coincide well. Therefore, it is expected that the program or objects made in the paper are useful for the automotive engineers when they design a new engine/transmission system or modify a part of existing system.

  • PDF

SECOND ORDER NONSMOOTH MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEM INVOLVING SUPPORT FUNCTIONS

  • Kharbanda, Pallavi;Agarwal, Divya;Sinha, Deepa
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.835-852
    • /
    • 2013
  • In this paper, we have considered a class of constrained non-smooth multiobjective fractional programming problem involving support functions under generalized convexity. Also, second order Mond Weir type dual and Schaible type dual are discussed and various weak, strong and strict converse duality results are derived under generalized class of second order (F, ${\alpha}$, ${\rho}$, $d$)-V-type I functions. Also, we have illustrated through non-trivial examples that class of second order (F, ${\alpha}$, ${\rho}$, $d$)-V-type I functions extends the definitions of generalized convexity appeared in the literature.

Improved Gradient Direction Assisted Linking Algorithm for Linear Feature Extraction in High Resolution Satellite Images, an Iterative Dynamic Programming Approach

  • Yang, Kai;Liew, Soo Chin;Lee, Ken Yoong;Kwoh, Leong Keong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.408-410
    • /
    • 2003
  • In this paper, an improved gradient direction assisted linking algorithm is proposed. This algorithm begins with initial seeds satisfying some local criteria. Then it will search along the direction provided by the initial point. A window will be generated in the gradient direction of the current point. Instead of the conventional method which only considers the value of the local salient structure, an improved mathematical model is proposed to describe the desired linear features. This model not only considers the value of the salient structure but also the direction of it. Furthermore, the linking problem under this model can be efficiently solved by dynamic programming method. This algorithm is tested for linear features detection in IKONOS images. The result demonstrates this algorithm is quite promising.

  • PDF

A Study on Operations in Single - Card KANBAN System with a General-Type-Structure Production Process (일반 형태의 생산구조 단일카드 KANBAN 시스템의 운영 최적화)

  • Kang, Suk-Ho;Ree, Sang-Bok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.16 no.2
    • /
    • pp.109-117
    • /
    • 1990
  • In this paper we study a mathematical programming model for the single-card KANBAN system in a multi-stage capacitated general-type-structure production. Until now this production type setting has not been studied. The modeling of this problem results in a complex integer programming which can be modified to the more simple integer programming model. We present a heuristic method and some numerical examples. Though the presented method doesn't always find an optimal solution, this method guarantees to find a feasible solution. We expect this work to be practised in the real fields.

  • PDF

A Study on the Regionalization of the Municipal Solid Waste Management System Using a Mathematical Programming Model (수리계획모형을 활용한 대도시 폐기물 관리 시스템의 광역화 운영 계획에 관한 연구)

  • 김재희;김승권;이용대
    • Korean Management Science Review
    • /
    • v.20 no.1
    • /
    • pp.65-76
    • /
    • 2003
  • The increased environmental concerns and the emphasis on recycling are gradually shifting the orientation of municipal solid waste (MSW) management. This paper is designed to evaluate regionalization programs for MSW management system. We developed a mixed intiger network programming (MIP) model to identify environment-friendly, cost-effective expansion plans for regionalization scenarios considered. The MIP model is a dynamic capacity expansion model based on the network flow model that depicts the MSW management cycle. In particular, our model is designed to determine the optimal form of regionalization using binary variables. We apply this model to assess the regionalization program of Seoul Metropolitan City, which includes three scenarios such as 1) districting, 2) regionalization with neighboring self-governing districts, and 3) g1obalization with all districts. We demonstrate how our model can be used to plan the MSW system. The results indicate that optimal regionalization with nearby self-governing districts can eliminate unnecessary landfills and expansions if jurisdictional obstacles are removed.