• Title/Summary/Keyword: Mathematical Knowledge for Teaching

Search Result 261, Processing Time 0.023 seconds

A study on the student's question about the existence of the inverse function for the task that connects the two correspondence relations (두 대응관계를 연결한 과제에 대하여 역함수 존재 여부에 대한 학생의 질문에 관한 소고)

  • Lee, Dong Gun
    • The Mathematical Education
    • /
    • v.58 no.2
    • /
    • pp.239-262
    • /
    • 2019
  • This study deals with the anxieties that originated from specific student questions. Through the analysis of the textbooks, we confirmed that the question was a sufficiently plausible question. Third interviews were also held with three high school students. Through the interviews, we analyzed students' expressions about the new correspondence relationship that the two correspondence relations are linked. In the determination of the composite function and the determination of the inverse function existence, We have observed a case of how the worries about domain are being reconstructed from students into meaningful mathematical knowledge. Through this, we confirmed that the question will be confusing to students in the field. In this study, we observed the transfer of domain in relation to student domain in composite function. In particular, a present study revealed that the students involved in the interview were influenced by this domain transfer phenomenon in determining whether the task given in the interview was a function. This was the same in determining the existence of a inverse function. The examples presented in this study are limited to specific cases in limited circumstances. Therefore, it can not be applied directly to teaching and learning situations. However, it is expected that this study will provide other researchers with insight into function learning related research.

A Study of Teachers' Pedagogical Content Knowledge about Area of Plane Figure (평면도형의 넓이 지도에 대한 교사의 PCK 분석)

  • Park, Sun Young;Kang, Wan
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.4
    • /
    • pp.495-515
    • /
    • 2012
  • This study is to diversely analyze teachers' Pedagogical Content Knowledge (PCK) regarding to the area of plane figures and discuss the consideration for the materialization of the effective class in learning the area of plane figures by identifying the improvements based on problems indicated in PCK. The subjects of inquiry are what the problems with teachers' PCK regarding to the area of plane figures are and how they can be improved. In which is the first domain of PCK, teachers need to fully understand the concept of the area and the properties and classification of the area and length, recognized the sequence structure as a subject of guidance and improve the direction which naturally connects the flow of measurement by using random units in guidance of the area. In which is the second domain of PCK, teachers need to establish understanding of the concept for the area and understanding of a formula as a subject matter object and improve the activity, discovery and research oriented class for students as a guidance method by escaping from teacher oriented expository class and calculation oriented repetitive learning. They also need to avoid the biased evaluation of using a formula and evenly evaluate whether students understand the concept of the area as a performance evaluation method. In which is the third domain of PCK, teachers need to fully understand the concept of the area rather than explanation oriented correction and fundamentally teach students about errors by suggesting the activity to explore the properties of the area and length. They also need to plan a method to reflect student's affective aspects besides a compliment and encouragement and apply this method to the class. In which is the fourth domain of PCK, teachers need to increase the use of random units by having an independent consciousness about textbooks and supplementing the activity of textbooks and restructure textbooks by suggesting problematic situations in a real life and teaching the sequence structure. Also, class groups will need to be divided into an entire group, individual group, partner group and normal group.

  • PDF

A Practical Case Study of Student-Centered Education Using Small Group Activities: 'Prospect of Nuclear Engineering' Course (소그룹 활동을 활용한 학습자중심 교육 사례: '원자핵공학의 미래' 교과목을 중심으로)

  • Na, Yong-Su;Min, Hyeree
    • Journal of Engineering Education Research
    • /
    • v.22 no.5
    • /
    • pp.29-36
    • /
    • 2019
  • Here we analyze a case of redesigned course named "Prospect of Nuclear Engineering" as an example of student-entered education which came to the fore of university education innovation. This course was reformed from lecture-based to student-centered class by changing the context as follows: Stimulating students by addressing various problems or episodes behind scientific and mathematical concepts in the history; Offering experimental project to perceive the importance of differential equations; Exploring the research status and issues of nuclear engineering and the ways of attacking them by discipline; Discussing the public acceptance of nuclear power plants. Small group activities using 'small group discussion' and 'peer-learning' have been applied in this course to enhance students' critical and creative ability. In the survey, students rated highly in the fact that they could actively interact with the peers and that they could think for themselves through 'small group discussion' and 'peer-learning' which is not just the way of conveying knowledge.

A Study on Evaluation in College Mathematics Education in the New Normal Era (뉴노멀(New Normal) 시대 대학수학교육에서의 과정중심 PBL 평가 - '인공지능을 위한 기초수학' 강좌 사례를 중심으로 -)

  • Lee, Sang-Gu;Ham, Yoonmee;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.34 no.4
    • /
    • pp.421-437
    • /
    • 2020
  • Problem/Project based learning(PBL) is a student-centered teaching method in which students collaboratively solve problems and reflect their experiences. According to the results of PBL study and the experiences of the authors in PBL instruction, this paper introduced the necessities, output and significance of learning process PBL evaluation method and sums up our PBL evaluation process. The issue of appropriate and fair evaluation has been raised in untact (non-contact) university mathematics education due to the novel coronavirus (COVID-19) of the year 2020. To this end, when we had the course on for the summer semester held at S University in the summer of 2020. To ensure the fairness in evaluation and to improve the quality of our college math education, the PBL evaluation method was fully adapted. As a result, most of the students who took the lecture have learned a wide range of related knowledge without a single exception, and students agreed it is an ideal, fair, rational, and effective evaluation method applicable to other online courses in the era of untact education. This case was summarized in detail and introduced in this paper.

Analysis on Ratio and Proportion Concepts: A Story of a Fourth Grader (4학년 아동의 비와 비례 개념 분석)

  • Lee Jong-Euk
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.2
    • /
    • pp.157-177
    • /
    • 2006
  • The concepts of ratio and proportion do not develop in isolation. Rather, they are part of the individual's multiplicative conceptual field, which includes other concepts such as multiplication, division, and rational numbers. The current study attempted to clarify the beginning of this development process. One fourth student, Kyungsu, was encourage to schematize his trial-and-error-based method, which was effective in solving so-called missing-value tasks. This study describes several advancements Kyungsu made during the teaching experiment and analyzes the challenges Kyungsu faced in attempting to schematize his method. Finally, the mathematical knowledge Kyungsu needed to further develop his ratio and proportion concepts is identified. The findings provide additional support for the view that the development of ratio and proportion concepts is embedded within the development of the multiplicative conceptual field.

  • PDF

An Analysis of Difficulties of Teachers and Students in Class on Weight (무게 단원 수업에서 겪는 교사와 학생의 어려움 분석)

  • Park, Joonhyeong;Jhun, Youngseok
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.3
    • /
    • pp.295-301
    • /
    • 2014
  • The purpose of this study is to investigate the difficulties of teachers and students on the unit about 'measuring weight.' In this research, we have acquired data about teachers through survey, interview, and self-reflection journals, at the same time we have collected information on the students through survey, assessment test, and interview. We have extracted the difficulties from analysis with constant comparison method. In addition, we have analysed the curriculum of science and mathematics to know the leaning sequence. The analysis had been checked up by experts in science education. The result of the study is as follows: The difficulties of teachers are from the lack of teachers' descriptive knowledge, disorder of conceptual hierarchy in the curriculum, poor experimental instruments, and low psychomotor skill of students. The difficulties of students are from common misconceptions, opaque concepts, lack of manipulation skill, insufficiency of mathematical ability, difficulty of application of principles to the real situation, and lack of problem-solving ability. In addition, teachers have recognized that students face more difficulties in experiment class, while students think that they face more difficulties in conceptual understanding class.

Ethnomathematics and Multicultural Mathematics Education: Educational Discourses of Diversity and Its Implications (민족지학적 수학과 다문화적 수학교육: 수학교실에서의 다양성에 대한 교육적 담론)

  • Ju, Mi-Kyung
    • School Mathematics
    • /
    • v.11 no.4
    • /
    • pp.625-642
    • /
    • 2009
  • This paper presents an overview of theories about ethnomathematics to seek for implications for multicultural mathematics education. Initiated by anthropological inquiries into mathematics outside of Europe, research of ethnomathematics has revealed the facets of mathematics as a historicocultural construct of a community. Specifically, it has been shown that mathematics is culturally relative knowledge system situated within a certain communal epistemological norms. This implies that indigenous mathematics, which had traditionally been regarded as primitive and marginal knowledge, is a historicocultural construct whose legitimacy is conferred by the system of the communal epistemological norms. The recognition of the cultural facets in mathematics has faciliated the reconsideration of what is legitimate mathematics. what is mathematical competence, and what teaching and learning mathematics is an about. This paper inquires multicultral discourses of mathematics education that research of ethnomathematics provides and identifies its implications concerning multicultural mathematics education.

  • PDF

An Analysis of the Word Problem in Elementary Mathematics Textbook from a Practical Contextual Perspective (초등 수학 교과서의 문장제에 대한 실제적 맥락 관점에서의 분석)

  • Kang, Yunji
    • Education of Primary School Mathematics
    • /
    • v.25 no.4
    • /
    • pp.297-312
    • /
    • 2022
  • Word problems can lead learners to more meaningfully learn mathematics by providing learners with various problem-solving experiences and guiding them to apply mathematical knowledge to the context. This study attempted to provide implications for the textbook writing and teaching and learning process by examining the word problem of elementary mathematics textbooks from the perspective of practical context. The word problem of elementary mathematics textbooks was examined, and elementary mathematics textbooks in the United States and Finland were referenced to find specific alternatives. As a result, when setting an unnatural context or subject to the word problem in elementary mathematics textbooks, artificial numbers were inserted or verbal expressions and illustrations were presented unclearly. In this case, it may be difficult for learners to recognize the context of the word problem as separate from real life or to solve the problem by understanding the content required by the word problem. In the future, it is necessary to organize various types of word problems in practical contexts, such as setting up situations in consideration of learners in textbooks, actively using illustrations and diagrams, and organizing verbal expressions and illustrations more clearly.

An Effect of the Constructivist Discussion on Learning Attitude in Mathematics and Children's Mathematics Achievement (구성주의적 토의식 학습이 수학에 대한 태도 및 학업성취도에 미치는 영향)

  • Hwang, Hye-Jin;Hwang, Hang-Kyun
    • Education of Primary School Mathematics
    • /
    • v.11 no.1
    • /
    • pp.59-74
    • /
    • 2008
  • Mathematical knowledge is not exact definition but the supposition. Considering the nature of mathematics, realization of mathematics teaching which pursues critical thinking and rationality would be our problems. Accordingly, I set the subject of this study whether learning of constructivist discussion, which induces reflective thinking through communicating with others by expression with language of mathematical thinking in discussion, is effective against attitude on Mathematics and Mathematics achievement and study themes are as follows; A. Is learning of constructivist discussion effective against attitude on Mathematics? A-1. Is there any difference of self-conception on the subject between experimental group applied to learning of constructivist discussion and comparative group? A-2. Is there any difference of attitude on the subject between experimental group applied to learning of constructivist discussion and comparative group? A-3. Is there any difference of learning habits on the subject between experimental group applied to learning of constructivist discussion and comparative group? B. Is learning of constructivist discussion effective against mathematics achievement? The objects of study are 30 children of one class in the third grade of elementary school in Seoul for experimental group, and another one class with 30 children is comparative group. Study results and conclusion based on those results are as follows; First, students make reflective thinking through communication each other, therefore, instructor should create discussion environment for communication to express and form their mathematical thinking. Next, adaptability in student's mathematics activities and mathematical ideas should be permissible, and those should become divergent thinking. However, this study analyzed comparative results from only two each class having enrollment of thirty in the third grade. Accordingly, results from students in various grades and environment that are required to get more significant conclusion statistically.

  • PDF

A Study on Pre-service Elementary Teachers' Mathematical Beliefs about the Nature of Mathematics and the Mathematics Learning (수학 교수 학습에 대한 예비초등교사의 신념 연구)

  • Kim, Jinho;Kang, Eun Kyung;Kim, Sangmee;Kwon, Sungyong;Park, Mangoo;Cho, SooYun
    • Education of Primary School Mathematics
    • /
    • v.22 no.1
    • /
    • pp.49-64
    • /
    • 2019
  • The purpose of the study was to examine the current status of prospective elementary school teachers' mathematical beliefs. 339 future elementary school teachers majoring in mathematics education from 4 universities participated in the study. The questionnaire used in the TEDS-M(Tatto et al., 2008) was translated into Korean for the purpose of the study. The researchers analyzed the pre-service elementary teachers' beliefs about the nature of mathematics and about mathematics learning. Also, the results of the survey was analyzed by various aspects. To determine differences between the groups, one-way analysis of variance was used. To check the relationship between beliefs about the nature of mathematics and about the mathematics learning, correlation analysis was used. The results of the study revealed that the pre-service elementary teachers tends to believe that the nature of mathematics as 'process of inquiry' rather than 'rules and procedures' which is a view that mathematics as ready-made knowledge. In addition, the pre-service elementary teachers tend to consider 'active learning' as desirable aspects in mathematics teaching-learning practice, while 'teacher's direction' was not. We found that there were statistically significant correlation between 'process of inquiry' and 'active learning' and between 'rules and procedures' and 'teacher direction'. On the basis of these results, more extensive and multifaced research on mathematical beliefs should be needed to design curriculum and plan lessons for future teachers.