• Title/Summary/Keyword: Mathematical Human Model

Search Result 177, Processing Time 0.036 seconds

The Impact of National Innovation Capabilities and Institutional Quality on Economic Growth (국가혁신역량과 제도의 질이 경제성장에 미치는 영향)

  • Cho, Hyeongrye;Chung, Sunyang
    • Journal of Technology Innovation
    • /
    • v.23 no.4
    • /
    • pp.33-61
    • /
    • 2015
  • The global economy is rapidly changing by technological innovation and diffusion of knowledge across nations. Therefore it is still important issue to find a major variables for convergence and divergence of economic development. The studies up to present on the relationship between innovation and institution has limitations that they have dealt with this issue only in term of cross-sectional study or mathematical research models. This paper aims at analyzing the impact of innovation capabilities and institutional quality on the economic growth. Empirically this paper will explore the relationship among human capital capacity and FDI, R&D expenditures and innovation capabilities and institutional quality. This paper analyzes 64 countries, which were divided into 4 groups depending on the level of economic development. Based on the data from 1995 to 2011 and by using a panel model, we look at the structural implications of the research questions. According to our analysis, the weight of R&D and the innovation capabilities were identified as important determinants of economic growth, and FDI was significant factor for economic growth in the upper middle group countries. In case of the innovation capabilities of countries, the diffusion and openness of innovation were most meaningful variables for economic growth. Also, institutional quality has a significantly positive impact. However, in the low-level economic group, innovation capabilities and institutions have a negative impact on economic growth. This paper identifies an important policy implications that of national innovation and institutional factors should be properly invested in accordance with the level of a country's economic growth.

A Case Study of "Engineering Design" Education with Emphasize on Hands-on Experience (기계공학과에서 제시하는 Hands-on Experience 중심의 "엔지니어링 디자인" 교과목의 강의사례)

  • Kim, Hong-Chan;Kim, Ji-Hoon;Kim, Kwan-Ju;Kim, Jung-Soo
    • Journal of Engineering Education Research
    • /
    • v.10 no.2
    • /
    • pp.44-61
    • /
    • 2007
  • The present investigation is concerned chiefly with new curriculum development at the Department of Mechanical System & Design Engineering at Hongik University with the aim of enhancing creativity, team working and communication capability which modern engineering education is emphasizing on. 'Mechanical System & Design Engineering' department equipped with new curriculum emphasizing engineering design is new name for mechanical engineering department in Hongik University. To meet radically changing environment and demands of industries toward engineering education, the department has shifted its focus from analog-based and machine-centered hard approach to digital-based and human-centered soft approach. Three new programs of Introduction to Mechanical System & Design Engineering, Creative Engineering Design and Product Design emphasize hands-on experiences through project-based team working. Sketch model and prototype making process is strongly emphasized and cardboard, poly styrene foam and foam core plate are provided as working material instead of traditional hard engineering material such as metals material because these three programs focus more on creative idea generation and dynamic communication among team members rather than the end results. With generative, visual and concrete experiences that can compensate existing engineering classes with traditional focus on analytic, mathematical and reasoning, hands-on experiences can play a significant role for engineering students to develop creative thinking and engineering sense needed to face ill-defined real-world design problems they are expected to encounter upon graduation.

A Non-consecutive Cloth Draping Simulation Algorithm using Conjugate Harmonic Functions (켤레조화함수를 이용한 비순차적 의류 주름 모사 알고리즘)

  • Kang Moon Koo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.181-191
    • /
    • 2005
  • This article describes a simplified mathematical model and the relevant numerical algorithm to simulate the draped cloth on virtual human body. The proposed algorithm incorporates an elliptical, or non-consecutive, method to simulate the cloth wrinkles on moving bodies without resorting to the result of the past time-steps of drape simulation. A global-local analysis technique was employed to decompose the drape of cloths into the global deformation and the local wrinkles that will be superposed linearly The global deformation is determined directly by the rotation and the translation of body parts to generate a wrinkle-free yet globally deformed shape of cloth. The local wrinkles are calculated by solving simple elliptical equations based on the orthogonality between conjugate harmonic functions representing the wrinkle amplitude and the direction of wrinkles. The proposed method requires no interpolative time frames even for discontinuous body postures. Standing away from the incremental approach of time integration in conventional methods, the proposed method yields a remarkable reduction of CPU time and an enhanced stability. Also, the transient motion of cloth could be achieved by interpolating between the deformations corresponding to each static posture.

Modification of Trunk Thickness of MIRD phantom Based on the Comparison of Organ Doses with Voxel Phantom (체적소팬텀과의 장기선량 비교를 통한 MIRD팬텀 몸통두께 수정)

  • Lee, Choon-Sik;Park, Sang-Hyun;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.199-206
    • /
    • 2003
  • Because the MIRD phantom, the representative mathematical phantom was developed for the calculation of internal radiation dose, and simulated by the simplified mathematical equations for rapid computation, the appropriateness of application to external dose calculation and the closeness to real human body should be justified. This study was intended to modify the MIRD phantom according to the comparison of the organ absorbed doses in the two phantoms exposed to monoenergetic broad parallel photon beams of the energy between 0.05 MeV and 10 MeV. The organ absorbed doses of the MIRD phantom and the Zubal yokel phantom were calculated for AP and PA geometries by MCNP4C, general-purpose Monte Carlo code. The MIRD phantom received higher doses than the Zubal phantom for both AP and PA geometries. Effective dose in PA geometry for 0.05 MeV photon beams showed the difference up to 50%. Anatomical axial views of the two phantoms revealed the thinner trunk thickness of the MIRD phantom than that of the Zubal phantom. To find out the optimal thickness of trunk, the difference of effective doses for 0.5 MeV photon beams for various trunk thickness of the MIRD phantom from 20 cm to 36 cm were compared. The optimal thunk thickness, 24 cm and 28 cm for AP and PA geometries, respectively, showed the minimum difference of effective doses between the two phantoms. The trunk model of the MIRD phantom was modified and the organ doses were recalculated using the modified MIRD phantom. The differences of effective dose for AP and PA geometries reduced to 7.3% and the overestimation of organ doses decreased, too. Because MIRD-type phantoms are easier to be adopted in Monte Carlo calculations and to standardize, the modifications of the MIRD phantom allow us to hold the advantage of MIRD-type phantoms over a voxel phantom and alleviate the anatomical difference and consequent disagreement in dose calculation.

A Study on the Overall Economic Risks of a Hypothetical Severe Accident in Nuclear Power Plant Using the Delphi Method (델파이 기법을 이용한 원전사고의 종합적인 경제적 리스크 평가)

  • Jang, Han-Ki;Kim, Joo-Yeon;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.127-134
    • /
    • 2008
  • Potential economic impact of a hypothetical severe accident at a nuclear power plant(Uljin units 3/4) was estimated by applying the Delphi method, which is based on the expert judgements and opinions, in the process of quantifying uncertain factors. For the purpose of this study, it is assumed that the radioactive plume directs the inland direction. Since the economic risk can be divided into direct costs and indirect effects and more uncertainties are involved in the latter, the direct costs were estimated first and the indirect effects were then estimated by applying a weighting factor to the direct cost. The Delphi method however subjects to risk of distortion or discrimination of variables because of the human behavior pattern. A mathematical approach based on the Bayesian inferences was employed for data processing to improve the Delphi results. For this task, a model for data processing was developed. One-dimensional Monte Carlo Analysis was applied to get a distribution of values of the weighting factor. The mean and median values of the weighting factor for the indirect effects appeared to be 2.59 and 2.08, respectively. These values are higher than the value suggested by OECD/NEA, 1.25. Some factors such as small territory and public attitude sensitive to radiation could affect the judgement of panel. Then the parameters of the model for estimating the direct costs were classified as U- and V-types, and two-dimensional Monte Carlo analysis was applied to quantify the overall economic risk. The resulting median of the overall economic risk was about 3.9% of the gross domestic products(GDP) of Korea in 2006. When the cost of electricity loss, the highest direct cost, was not taken into account, the overall economic risk was reduced to 2.2% of GDP. This assessment can be used as a reference for justifying the radiological emergency planning and preparedness.

Contrast Media in Abdominal Computed Tomography: Optimization of Delivery Methods

  • Joon Koo Han;Byung Ihn Choi;Ah Young Kim;Soo Jung Kim
    • Korean Journal of Radiology
    • /
    • v.2 no.1
    • /
    • pp.28-36
    • /
    • 2001
  • Objective: To provide a systematic overview of the effects of various parameters on contrast enhancement within the same population, an animal experiment as well as a computer-aided simulation study was performed. Materials and Methods: In an animal experiment, single-level dynamic CT through the liver was performed at 5-second intervals just after the injection of contrast medium for 3 minutes. Combinations of three different amounts (1, 2, 3 mL/kg), concentrations (150, 200, 300 mgI/mL), and injection rates (0.5, 1, 2 mL/sec) were used. The CT number of the aorta (A), portal vein (P) and liver (L) was measured in each image, and time-attenuation curves for A, P and L were thus obtained. The degree of maximum enhancement (Imax) and time to reach peak enhancement (Tmax) of A, P and L were determined, and times to equilibrium (Teq) were analyzed. In the computed-aided simulation model, a program based on the amount, flow, and diffusion coefficient of body fluid in various compartments of the human body was designed. The input variables were the concentrations, volumes and injection rates of the contrast media used. The program generated the time-attenuation curves of A, P and L, as well as liver-to-hepatocellular carcinoma (HCC) contrast curves. On each curve, we calculated and plotted the optimal temporal window (time period above the lower threshold, which in this experiment was 10 Hounsfield units), the total area under the curve above the lower threshold, and the area within the optimal range. Results: A. Animal Experiment: At a given concentration and injection rate, an increased volume of contrast medium led to increases in Imax A, P and L. In addition, Tmax A, P, L and Teq were prolonged in parallel with increases in injection time The time-attenuation curve shifted upward and to the right. For a given volume and injection rate, an increased concentration of contrast medium increased the degree of aortic, portal and hepatic enhancement, though Tmax A, P and L remained the same. The time-attenuation curve shifted upward. For a given volume and concentration of contrast medium, changes in the injection rate had a prominent effect on aortic enhancement, and that of the portal vein and hepatic parenchyma also showed some increase, though the effect was less prominent. A increased in the rate of contrast injection led to shifting of the time enhancement curve to the left and upward. B. Computer Simulation: At a faster injection rate, there was minimal change in the degree of hepatic attenuation, though the duration of the optimal temporal window decreased. The area between 10 and 30 HU was greatest when contrast media was delivered at a rate of 2 3 mL/sec. Although the total area under the curve increased in proportion to the injection rate, most of this increase was above the upper threshould and thus the temporal window was narrow and the optimal area decreased. Conclusion: Increases in volume, concentration and injection rate all resulted in improved arterial enhancement. If cost was disregarded, increasing the injection volume was the most reliable way of obtaining good quality enhancement. The optimal way of delivering a given amount of contrast medium can be calculated using a computer-based mathematical model.

  • PDF

New Tool to Simulate Microbial Contamination of on-Farm Produce: Agent-Based Modeling and Simulation (재배단계 농산물의 안전성 모의실험을 위한 개체기반 프로그램 개발)

  • Han, Sanghyun;Lee, Ki-Hoon;Yang, Seong-Gyu;Kim, Hwang-Yong;Kim, Hyun-Ju;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • This study was conducted to develop an agent-based computing platform enabling simulation of on-farm produce contamination by enteric foodborne pathogens, which is herein called PPMCS (Preharvest Produce Microbial Contamination Simulator). Also, fecal contamination of preharvest produce was simulated using PPMCS. Although Agent-based Modeling and Simulation, the tool applied in this study, is rather popular in where socio-economical human behaviors or ecological fate of animals in their niche are to be predicted, the incidence of on-farm produce contamination which are thought to be sporadic has never been simulated using this tool. The agents in PPMCS including crop, animal as a source of fecal contamination, and fly as a vector spreading the fecal contamination are given their intrinsic behaviors that are set to be executed at certain probability. Once all these agents are on-set following the intrinsic behavioral rules, consequences as the sum of all the behaviors in the system can be monitored real-time. When fecal contamination of preharvest produce was simulated in PPMCS as numbers of animals, flies, and initially contaminated plants change, the number of animals intruding cropping area affected most on the number of contaminated plants at harvest. For further application, the behaviors and variables of the agents are adjustable depending on user's own scenario of interest. This feature allows PPMCS to be utilized in where different simulating conditions are tested.