• 제목/요약/키워드: Mathematical Formulation

검색결과 437건 처리시간 0.023초

GLOBAL SOLUTIONS OF THE EXPONENTIAL WAVE EQUATION WITH SMALL INITIAL DATA

  • Huh, Hyungjin
    • 대한수학회보
    • /
    • 제50권3호
    • /
    • pp.811-821
    • /
    • 2013
  • We study the initial value problem of the exponential wave equation in $\math{R}^{n+1}$ for small initial data. We shows, in the case of $n=1$, the global existence of solution by applying the formulation of first order quasilinear hyperbolic system which is weakly linearly degenerate. When $n{\geq}2$, a vector field method is applied to show the stability of a trivial solution ${\phi}=0$.

OPTIMIZATION FOR THE BUBBLE STABILIZED LEGENDRE GALERKIN METHODS BY STEEPEST DESCENT METHOD

  • Kim, Seung Soo;Lee, Yong Hun;Oh, Eun Jung
    • 호남수학학술지
    • /
    • 제36권4호
    • /
    • pp.755-766
    • /
    • 2014
  • In the discrete formulation of the bubble stabilized Legendre Galerkin methods, the system of equations includes the artificial viscosity term as the parameter. We investigate the estimation of this parameter to get the optimal solution which minimizes the maximum error. Some numerical results are reported.

THE VARIATIONAL THEORY OF A CIRCULAR ARCH WITH TORSIONAL SPRINGS AT BOTH EDGES

  • Go, Jae-Gwi
    • 대한수학회지
    • /
    • 제44권3호
    • /
    • pp.707-717
    • /
    • 2007
  • Arches are constrained with rotational resistance at both edges. An energy method is used to derive variational formulation which is used to prove the existence of equilibrium states of elastic circular arches for the torsional spring constants ${\rho}-\;{\geq}\;0,\;{\rho}+\;{\geq}\;0,\;and\;{\rho}-\;+\;{\rho}+\;>\;0$. The boundary conditions are searched using the existence of minimum potential energy.

THE TRANSPORT OF NUCLEAR CONTAMINATION IN FRACTURED POROUS MEDIA

  • Jim-Douglas, Jr.;Anna M.Spagnuolo
    • 대한수학회지
    • /
    • 제38권4호
    • /
    • pp.723-761
    • /
    • 2001
  • The objects of this paper are to formulated a model for the transport of a chain of radioactive waste products in a fractured porous medium, to devise an effective and efficient numerical method for approximating the solution of the model, and to demonstrated the convergence of the numerical method. The formulation begins from a model in an unfractured (single porosity) medium, passes through a double porosity model in a fractured medium, and ends with a modified single porosity model that takes the relevant time scales of the flow and the nuclear decay.

  • PDF

A UNIFIED STABILIZED FINITE VOLUME METHOD FOR STOKES AND DARCY EQUATIONS

  • Boukabache, Akram;Kechkar, Nasserdine
    • 대한수학회지
    • /
    • 제56권4호
    • /
    • pp.1083-1112
    • /
    • 2019
  • In this paper, we present and analyze a cell-centered collocated finite volume scheme for incompressible flows to compute solutions simultaneous to Stokes and Darcy equations by applying a pressure jump stabilization term to avoid locking. We prove that the new stabilized FV formulation satisfies a discrete inf-sup condition and error estimates for both problems. Finally, we present some numerical examples confirming this analysis.

An analytical model of layered continuous beams with partial interaction

  • Schnabl, Simon;Planinc, Igor;Saje, Miran;Cas, Bojan;Turk, Goran
    • Structural Engineering and Mechanics
    • /
    • 제22권3호
    • /
    • pp.263-278
    • /
    • 2006
  • Starting with the geometrically non-linear formulation and the subsequent linearization, this paper presents a consistent formulation of the exact mechanical analysis of geometrically and materially linear three-layer continuous planar beams. Each layer of the beam is described by the geometrically linear beam theory. Constitutive laws of layer materials and relationships between interlayer slips and shear stresses at the interface are assumed to be linear elastic. The formulation is first applied in the analysis of a three-layer simply supported beam. The results are compared to those of Goodman and Popov (1968) and to those obtained from the formulation of the European code for timber structures, Eurocode 5 (1993). Comparisons show that the present and the Goodman and Popov (1968) results agree completely, while the Eurocode 5 (1993) results differ to a certain degree. Next, the analytical solution is used in formulating a general procedure for the analysis of layered continuous beams. The applications show the qualitative and quantitative effects of the layer and the interlayer slip stiffnesses on internal forces, stresses and deflections of composite continuous beams.

Theoretical formulations of current and unique Rayleigh waves with impedance boundary condition embedding normal stress

  • Nguyen, Xuan Quynh;Lee, Dongkyu
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.279-286
    • /
    • 2022
  • In this article, a novel propagation formulation of Rayleigh waves in a compressible isotropic half-space with impedance boundary condition is proposed by embedding the normal stress. In a two-dimensional case, it is assumed that a design boundary is free of normal traction and a shear traction depends on linearly a normal component of displacements multiplied by frequencies. Therefore, impedance boundary conditions affect the normal stress, where the impedance parameters correspond to dimensions of stresses over velocity. On the other hand, vanished impedance values are traction-free boundary conditions. The main purpose of this article is to present theoretically the existence and uniqueness of a Rayleigh wave formulation relying on secular equation's mathematical analyses. Its velocity varies along with the impedance parameters. Moreover, numerical experiments with different values for the velocity of Rayleigh waves are carried out. The present Rayleigh waves study is a fundamental step in analyzing the cause and effect of physical states such as building or structure damages resulting from natural dynamics. The results of the study generate a basic design formulation theory to test the effects of Rayleigh waves affecting structures when an earthquake occurs. The presence and uniqueness of the proposed formulation is verified by mutual comparisons of several numerical examples.

Transient response of rhombic laminates

  • Anish, Anish;Chaubey, Abhay K.;Vishwakarma, Satyam;Kumar, Ajay;Fic, Stanislaw;Barnat-Hunek, Danuta
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.551-562
    • /
    • 2019
  • In the present study, a suitable mathematical model considering parabolic transverse shear strains for dynamic analysis of laminated composite skew plates under different types of impulse and spatial loads was presented for the first time. The proposed mathematical model satisfies zero transverse shear strain at the top and bottom of the plate. On the basis of the cubic variation of thickness coordinate in in-plane displacement fields of the present mathematical model, a 2D finite element (FE) model was developed including skew transformations in the mathematical model. No shear correction factor is required in the present formulation and damping effect was also incorporated. This is the first FE implementation considering a cubic variation of thickness coordinate in in-plane displacement fields including skew transformations to solve the forced vibration problem of composite skew plates. The effect of transverse shear and rotary inertia was incorporated in the present model. The Newmark-${\beta}$ scheme was adapted to perform time integration from step to step. The $C^0$ FE formulation was implemented to overcome the problem of $C^1$ continuity associated with the cubic variation of thickness coordinate in in-plane displacement fields. The numerical studies showed that the present 2D FE model predicts the result close to the analytical results. Many new results varying different parameter such as skew angles, boundary conditions, etc. were presented.