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A UNIFIED STABILIZED FINITE VOLUME METHOD FOR

STOKES AND DARCY EQUATIONS

Akram Boukabache and Nasserdine Kechkar

Abstract. In this paper, we present and analyze a cell-centered collo-

cated finite volume scheme for incompressible flows to compute solutions
simultaneous to Stokes and Darcy equations by applying a pressure jump

stabilization term to avoid locking. We prove that the new stabilized FV
formulation satisfies a discrete inf-sup condition and error estimates for

both problems. Finally, we present some numerical examples confirming

this analysis.

1. Introduction

Finite difference and finite element methods have been extensively applied in
computational fluid dynamics. Although the finite difference methods, which
are locally mass conserving, are simple to implement, they are not flexible with
complicated geometry and general boundary conditions. On the other hand,
the finite element methods possess the mesh flexibility to handle complex geo-
metrical settings, but they do not conserve mass at element level. Furthermore,
the approximation finite element spaces for the primitive variables (velocity
and pressure) must be chosen appropriately to ensure numerical schemes sta-
bility and convergence. It is widely understood that many computationally
appealing pairs of low-order approximations fail to satisfy the so-called stabil-
ity inf-sup condition (see [6, 7] and the references therein). The finite volume
methods (FVM) were initially developed as an efficient middle ground between
the finite difference and finite element methods. Recently, several finite volume
schemes have been proposed in many mathematical and engineering studies
(see [3–5, 14, 15] and the references therein). Different FV schemes were at-
temptedly developed by the use of finite element ideas in order to achieve a
more rigourous FV methodology. Among these new approaches, the collocated
FV schemes seem to attract CFD researchers attention for several reasons.
Unfortunately, one crucial drawback was noticed from the very start. The
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well-known lack of discrete coercivity caused some instability in the approxi-
mate mixed solutions for the Stokes and Navier-Stokes problems. Nonetheless,
one can make the use of some stabilization procedures which were developed
earlier for unstable finite element methods (see [5]).

In fluid infiltration problems, like the ones encountered in surface/ground-
water or biological flows, the considered simplified problem is solved for a Stokes
flow in one part of the domain and a Darcy flow in the other part. It then
becomes adequate to work with a FVM that may solve both equations success-
fully and simultaneously and yield the same optimal convergence rates in both
regimes. Similar studies were undertaken in [1,2,11] for finite element methods
and in [13] using a finite volume method.

In this paper, we construct a unified treatment of Stokes and Darcy equa-
tions using a collocated FVM by approximating velocity and pressure solutions
with piecewise constant functions on the cells of a 2D or 3D mesh. Thus, no
dual grid is needed and the only requirement on the mesh is a geometrical as-
sumption for the consistency of the approximate diffusion flux [4]. We propose
to analyze stability and convergence properties of this discretization method.
It is crucial to note that we are not aware of any research work having ana-
lyzed and applied the same discrete operators as proposed presently. As it was
mentioned above, the resulting scheme is unstable unless some stabilization
technique is used. For the latter, we have opted to add to the incompressibility
equation a (consistent) symmetric pressure jump stabilization term across over
the cell edges. This stabilization was first introduced in the context of Stokes
equation [9] in a global form, and later considered in a local form in [10]. This
mixed stabilized technique is applied to both Stokes and Darcy flows in a uni-
fied manner. We prove optimal a priori error estimates in the energy norm
for both cases. Furthermore, some results of numerical tests are provided to
check the efficiency of the proposed FV scheme. It is anticipated here that the
coupled Stokes-Darcy version of the paper is presently under investigatyion.

The paper is organized as follows. In the next section, we briefly describe the
mathematical setting of the incompressible flow problem governed by the Stokes
and Darcy equations. We also recall some notation and the classical variational
formulation. Section 3 is devoted to the derivation of the approximate problem.
First, we define admissible discretizations for the FVM. Then, the proposed FV
schemes are discussed and recast under a discrete variational form. The core of
the paper is Section 4 in which we present a thorough study of the proposed FV
scheme with stability and error estimates results. In the following section we
report and discuss numerical results obtained for two test problems. Finally,
some conclusions are drawn.

2. The continuous problem

Let Ω ⊂ Rd (d = 2, 3) be an open bounded domain with polygonal or
polyhedral boundary ∂Ω.
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We consider the following equations:

A (u) +∇p = f in Ω,(1a)

∇ · u = 0 in Ω,(1b)

where

(2) A (u) =

{
−2µ∇ · ε (u) for Stokes,
αu for Darcy,

with ε (u) = 1
2

(
∇u + (∇u)

T
)
,u denoting the velocity vector, p the pressure

and f ∈
[
L2 (Ω)

]d
some given source term. α and µ are two positive parameters.

For simplicity, we assume Dirichlet and Neumann conditions on the bound-
ary:

u = 0 on ∂Ω for Stokes,(3a)

u · n = 0 on ∂Ω for Darcy.(3b)

Here, n denotes the unitary vector of the normal to ∂Ω.
In order to formulate the FVM scheme we first introduce the weak formula-

tion of the problem (1a)-(1b). Let us define the function Hilbert spaces:

(4) WD = {v ∈Hdiv (Ω) : v · n = 0 on ∂Ω} , WS =
{

v ∈ H1
0 (Ω)

d
}
,

and

(5) L2
0 =

{
q ∈ L2 :

∫
Ω

q = 0

}
.

Likewise, we denote the product space WX ×L2
0 by WX where X is chosen to

be D or S depending on the choice of equation (2).
Now, let a (u,v) be the bilinear form corresponding to the weak formulation

of A (u). We have for Stokes:

(6) a (u,v) = µ

{∫
Ω

∇u · ∇vdx+

∫
Ω

(∇ · u)(∇ · v)dx

}
and for Darcy:

(7) a (u,v) = α

∫
Ω

u · vdx.

Consider also the global bilinear form:

(8) B [(u, p) , (v, q)] = a (u,v)− (p,∇ · v)0,Ω + (q,∇ · u)0,Ω.

The weak formulation of (1a)-(1b) now takes the form:
Find (u, p) ∈ WX such that:

(9) B [(u, p) , (v, q)] = (f ,v)0,Ω ∀ (v, q) ∈ WX .
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3. The approximate problem

3.1. Spatial discretization and inequalities

First, let us recall the notion of admissible discretization for the FVM which
is given in [4].

Definition 3.1. An admissible finite volume mesh of Ω, denoted by D, is given
by D = (M, E ,P) where:

• M is a finite family of disjoint non-empty convex subdomains K of Ω
(the “control volumes”) such that:

– If d = 2, each control volume is either a rectangle or a triangle
with internal angles strictly lower than π

2 ;
– If d = 3, each control volume is a rectangular parallelepiped;
– Ω =

⋃
K∈MK. For any K ∈M, let ∂K = K\K be the boundary

of K and |K| > 0 denotes the measure of K.
• E is a finite family of disjoint subsets σ of Ω (the “edges” of the

mesh) such that, for all σ ∈ E , there exists a hyper-plane E of Rd
and K ∈ M with σ = ∂K ∩ E and σ is non-empty open subset of
E,whose (d− 1) dimensional measure |σ| > 0. We assume that, for
all K ∈ M, there exists a subset EK of E such that ∂K =

⋃
σ∈EK σ.

Furthermore E =
⋃
K∈M EK . We then assume that E is partitioned

into E = Eint ∪ Eext, such that:
– Eint = {σ ∈ E ; σ 6⊂ ∂Ω} ;
– Eext = {σ ∈ E ; σ ⊂ ∂Ω} .

• P is a family of points of Ω indexed byM, denoted by P = (xK)K∈M,
such that:

– If d = 2, xK is the intersection of the perpendicular bisectors of
each edge.

– If d = 3, xK is the intersection of the lines issued from the center
of the edge and orthogonal to the edge.

Note that any internal edge separating two control volumes K and L is
denoted by σ = K|L and satisfies the orthogonality condition:

xσ = [xK , xL] ∩ K|L.

Next, let us denote by dKL the distance between xK and xL, and dKσ the
distance between xK and xσ.

If hK denotes the diameter of each control volume K, then h is the maximum
of the values of hK (for K ∈M), i.e.,

h = sup
K∈M

hK .
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The regularity of the meshing is measured through the function regul (D) de-
fined by:

regul (D) = inf

{
dKσ

diam (K)
; K ∈M, σ ∈ EK

}
∪
{
dKσ
dKL

;K,L ∈M : σ = K|L ∈ Eint ∩ EK
}
∪
{

1

card (EK)

}
,

and we select θ > 0 such that regul (D) > θ.
Below, C,C1, C2, C3, . . . will be used to denote constants which are inde-

pendent of h but may depend on d, θ,Ω and µ.

Definition 3.2. Let D be an admissible discretization in the sense of Definition
3.1 and let HD (Ω) ⊂ L2 (Ω) be the space of functions which are piecewise
constant over each control volume K ∈ M. For all v ∈ HD (Ω) and for all

K ∈ M, we denote vK the constant value of v in K. For (v, w) ∈ HD (Ω)
2
,

we define the following inner product (corresponding to Dirichlet boundary
conditions) called “discrete H1

0 inner product”:

(10) [v, w]D =
∑

σ∈Eint
(σ=K|L)

|σ|
dKL

(vL − vK) (wL − wK) +
∑

σ∈Eext
(σ∈εK)

|σ|
dKσ

vKwK .

A norm in HD (Ω) called “discrete H1
0 norm” is obtained as follows:

‖v‖1,D = [v, v]
1/2
D .

We also define the following bilinear form (corresponding to Neumann bound-
ary conditions):

(11) 〈v, w〉D =
∑

σ∈Eint
(σ=K|L)

|σ|
dKL

(vL − vK) (wL − wK),

with the semi norm:

|v|1,D = 〈v, v〉1/2D .

These definitions extend naturally to vector valued functions as follows. For

v =
(
v(i)
)
i=1,...,d

∈ HD (Ω)
d

and w =
(
w(i)

)
i=1,...,d

∈ HD (Ω)
d
, we set:

[v,w]D =

d∑
i=1

[
v(i), w(i)

]
D
, ‖v‖1,D =

(
d∑
i=1

[
v(i), v(i)

]
D

)1/2

.

Proposition 3.3. The following discrete Poincaré inequalities hold:

(12)
‖v‖0,Ω ≤ diam (Ω) ‖v‖1,D ∀v ∈ HD (Ω) ;

‖v‖0,Ω ≤ C (Ω) |v|1,D ∀v ∈ HD (Ω) such that
∫

Ω
u = 0,

where C (Ω) depends only on Ω (cf. [4]).
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As in [5], let us define the interpolation operator πD : L2 (Ω) → HD (Ω) by
setting (πDu)K = ∅K (xK) for all K ∈ M and u ∈ L2 (Ω) with ∅K being the
orthogonal projection of L2 (Ω) on P1.

It has a natural extension to vector valued functions. We will keep the same
notation.

The operator πD satisfies the following:

Proposition 3.4. Let u be a function in H2 (Ω) ∩H1
0 (Ω). Then, there exists

C > 0 such that he following estimate holds:

(13) ‖πDu‖1,D ≤ Ch|u|2,Ω.

Proof. Here, we make use of results established in [5].
Let u ∈ H2 (Ω) ∩H1

0 (Ω) . First, we have

‖πDu‖21,D =
∑

σ∈Eint
(σ=K|L)

|σ|
dKL

((πDu)L − (πDu)K)
2

+
∑

σ∈Eext
(σ∈εK)

|σ|
dKσ

((πDu)K)
2

=
∑

σ∈Eint
(σ=K|L)

|σ|
dKL

(∅L (xL)− ∅K (xK))
2

+
∑

σ∈Eext
(σ∈εK)

|σ|
dKσ
∅K (xK)

2

≤ 2
∑

σ∈Eint
(σ=K|L)

|σ|
dKL

(∅K (xL)− ∅K (xK))
2

+ 2
∑

σ∈Eint
(σ=K|L)

|σ|
dKL

(∅L (xL)− ∅K (xL))
2

+ 2
∑

σ∈Eext
(σ∈εK)

|σ|
dKσ

(∅K (xK)− ∅K (xσ))
2

+ 2
∑

σ∈Eext
(σ∈εK)

|σ|
dKσ
∅K (xσ)

2

= T1 + T2 + T3 + T4.

To proceed, we must now bound each term of the right hand side of this relation.
The first summation in the above relation reads:

T1 = 2
∑

σ∈Eint
(σ=K|L)

|σ|
dKL

(∇∅K · (xL − xK))
2

= 2
∑

σ∈Eint
(σ=K|L)

|σ| dKL(∇∅K · nKL)
2
.

We define wK as the convex hull of K ∪
(
L;L ∩K ∈ EK

)
. Denote by hK the

diameter of wK . The quantity |σ| dKL can be seen as the measure of a domain
included in K ∪ L, and so is lower than the measure of wK . We get

T1 ≤ 2
∑

σ∈Eint
(σ=K|L)

|∅K |21,wK ≤ 2C1h
2

K

∑
σ∈Eint

(σ=K|L)

|u|22,wK

≤ C2h
2|u|22,Ω.(14)
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The second summation can be estimated as follows:

T2 ≤ 2C2
3

∑
σ∈Eint

(σ=K|L)

|σ|
dKL |L|

‖∅L − ∅K‖20,L

≤ 2C2
3

∑
σ∈Eint

(σ=K|L)

|σ|
dKL |L|

[
‖∅L − u‖20,L + ‖∅K − u‖20,L

]
.

Then, since L is included in both wL and wK , we get

T2 ≤ 2C2
3

∑
σ∈Eint

(σ=K|L)

|σ|
dKL |L|

[
‖∅L − u‖20,wL + ‖∅K − u‖20,wK

]

≤ 2C2
3

∑
σ∈Eint

(σ=K|L)

|σ|
dKL |L|

[
h

4

L|u|
2
2,wL

+ h
4

K |u|
2
2,wK

]
≤ C4h

2|u|22,Ω.(15)

Using the same arguments as for the bound of the term T1 (replace dKL by
dKσ), a similar result can be obtained for the third term:

(16) T3 ≤ C5h
2|u|22,Ω.

Finally, using the linearity of ∅K and the fact that u vanishes on ∂Ω, we have

T4 = 2
∑

σ∈Eext
(σ∈εK)

|σ|
dKσ
∅K (xσ)

2
=

1

|σ| dKσ

(∫
σ

∅K − u
)2

≤ 1

dKσ
‖∅K − u‖20,σ.

It follows that

T4 ≤ d
∑

σ∈Eint
(σ=K|L)

|σ|
dKσ |K|

[
‖∅K − u‖0,K + ‖∅K − u‖1,K

]2
≤ C6h

2|u|22,Ω.(17)

Gathering (14)-(17) yields the result. �

3.2. The natural scheme

Let us begin by defining the discrete divergence operator (∇D·) : HD (Ω)
d →

HD (Ω) by:

(18) ∀u ∈ HD (Ω)
d

(∇D · u)K =
1

|K|
∑

σ∈Eint∩EK
σ=K|L

|σ| uL + uK
2

·nσ ∀K ∈M.
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Likewise, define the discrete gradient ∇Dp ∈ HD (Ω)
d
, for any p ∈ HD (Ω) by:

(19) (∇Dp)K =
1

|K|

 ∑
σ∈Eint∩EK
σ=K|L

|σ| pL + pK
2

nσ +
∑

σ∈Eext∩EK

|σ| pKnσ

 .

Since
∑
σ∈EK |σ| nσ = 0 for all K ∈M, this discrete gradient equivalently can

be rewritten as:

(20) (∇Dp)K =
1

|K|
∑

σ∈Eint∩EK
σ=K|L

|σ| pL − pK
2

nσ.

Thus, reordering the summations, the adjoint of the discrete divergence with
respect to the discrete L2 inner product defines this discrete gradient ∇D. For

any pressure q ∈ HD (Ω) and velocity v ∈HD (Ω)
d

we get:∫
Ω

(∇Dq) · v =
∑
K∈M

vK ·
∑

σ∈Eint∩EK
σ=K|L

|σ| qL − qK
2

nK

=
∑

σ∈Eint
(σ=K|L)

|σ| qL − qK
2

vK · nK + |σ| qK − qL
2

vL · nL

= −
∑

σ∈Eint
(σ=K|L)

|σ| qK − qL
2

(vK + vL) · nK

= −
∑

σ∈Eint
(σ=K|L)

qK |σ|
vK + vL

2
· nK − qL |σ|

vK + vL
2

· nK

= −
∫

Ω

q (∇D · v) .(21)

Now, it remains to give a FV discretization of the viscous stress tensor ε (u).
To this end, let us note that the divergence of the stress tensor can be written

as:

(22) ∇ · ε (u) =
1

2
(∆u +∇(∇ · u)) .

So, for any given function u ∈ HD (Ω)
d
, let (∆Du) ∈ HD (Ω) be the function

defined by

(23) (∆Du)K =
1

|K|

 ∑
σ∈Eint∩EK
σ=K|L

|σ|
dLK

(uL − uK) +
∑

σ∈Eext∩EK

|σ|
dKσ

(−uK)

 ,

which is called the discrete Laplace operator (corresponding to the homoge-
neous Dirichlet boundary conditions).
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For discretizing the second summation in (22), we have taken a version of
a discrete operator ∇D (∇D · u) introduced in [8]. This can be formulated as
follows:

(24) (∇D (∇D · u))K =
1

|K|
∑

σ∈Eint∩EK
σ=K|L

|σ|
(∇D · u)L − (∇D · u)K

2
nσ,K .

As already mentioned in the introduction, it is very important to emphasize
that this version has not been analyzed and applied elsewhere.

Under all above considerations, the natural (classical) stabilized finite vol-
ume scheme for the solution of problem (1a)-(1b) consists in finding (u, p) ∈
HD(Ω)

d ×HD(Ω) such that for each control volume K of M:∫
K

(AD (u))K +

∫
K

(∇Dp)K =

∫
K

f ,(25a) ∫
K

(∇D · u)K + δ
∑

σ∈Eint∩EK
σ=K|L

|σ|h∂K [p] = 0,(25b)

where

(26) (AD (u))K =

{
−µ (∆Du)K − µ(∇D (∇D · u))K for Stokes,
α |K|uK for Darcy,

and [·] denoting the jump through interior edges. For insuring pressure unique-
ness, the system (25a)-(25b) is supplemented by the relation:∑

K∈M
|K| pK = 0.

Next, denote byWX
D the product space HD(Ω)

d×HD(Ω) with
∫

Ω
p = 0, where

the upper index X is chosen to be S or D depending on the choice of Stokes
or Darcy’s equation. WX

D is equipped with the following norm:

‖(u, p)‖2WX
D

= ‖u‖2l + ‖∇D · u‖20,Ω + ‖p‖20,Ω,

with

l =

{
1,D for Stokes,
0,Ω for Darcy.

3.3. Finite volume scheme for the weak formulation

The proposed schemes (25a)-(25b) may be recast under following “discrete
variational form” closer to that used in the finite element setting: Find (u, p) ∈
WX
D such that:

a (u,v)− (p,∇D · v)0,Ω =

∫
Ω

f · v ∀v ∈ HD (Ω)
d
,(27a)

(q,∇D · u)0,Ω + J (p, q) = 0 ∀q ∈ HD (Ω) ,(27b)
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where

(28) a (u,v) =

{
µ[u,v]1,D + µ

∫
Ω

(∇D · u) (∇D · v) for Stokes,

α
∑
K∈M |K|uK · vK for Darcy,

and

J (p, q) = δ
∑
K∈M

∫
∂K\∂Ω

h∂K [p] [q]ds.

Indeed, let v ∈ HD(Ω)
d

and q ∈ HD(Ω). Multiplying (25a) and (25b) by
vK and qK respectively, and summing over K ∈ M, the above formulation is
straightforward.

For Stokes we have ∫
K

(AD (u))K · vK = A+B,

where

A =
∑
K

vK ·
∫
K

−µ (∆Du)K

= −µ
∑
K

vK ·

 ∑
σ∈Eint∩EK
σ=K|L

|σ|
dKL

(uL − uK) +
∑

σ∈Eext∩EK

|σ|
dKσ

(−uK)



= −µ

 ∑
σ∈Eint

(σ=K|L)

|σ|
dKL

(uL − uK) · (vK − vL) +
∑

σ∈Eext
(σ∈EK)

|σ|
dKσ

(−uK) · vK


= µ[u,v]D,

and

B = −µ
∑
K

vK ·
∫
K

(∇D (∇D · u))K

=− µ
∑
K

vK ·
∑

σ∈Eint∩EK
σ=K|L

|σ|
(∇D · u)L − (∇D · u)K

2
nσ,K .

Using the same technique as in (21), we get

B = µ

∫
Ω

(∇D · u) (∇D · v) .

Now, we are in a position to introduce the following bilinear form which we
will be the base for our FVM:

(29) BD [(u, p) , (v, q)] = a (u,v)− (p,∇D · v)0,Ω + (q,∇D · u)0,Ω + J (p, q) ,
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in a such way that our proposed FV formulation reads: Find (u, p) ∈ WX
D such

that

(30) BD [(u, p) , (v, q)] = (f ,v)0,Ω ∀ (v, q) ∈ WX
D .

4. FV scheme study

4.1. Discrete solution regularity

Let us first state a boundedness result in the L2 (Ω) norm of the discrete

divergence for any element u ∈ HD (Ω)
d
.

Lemma 4.1. Let D be an admissible finite volume discretization of Ω in the

sense of Definition (3.1). Then, there exists C such that for all u ∈ HD (Ω)
d

(31) ‖∇D · u‖0,Ω ≤ C‖u‖1,D.

Proof. For any u ∈ HD (Ω)
d

we have

‖∇D · u‖20,Ω =
∑
K

1

|K|

 ∑
σ∈Eint∩EK
σ=K|L

|σ| uL + uK
2

· nσ


2

=
∑
K

1

|K|

 ∑
σ∈Eint∩EK
σ=K|L

|σ| uL + uK
2

· nσ −
∑
σ∈EK
σ=K|L

|σ|uK · nσ


2

=
∑
K

1

|K|

 ∑
σ∈Eint∩EK
σ=K|L

|σ| uL
2
· nσ +

∑
σ∈Eint∩EK
σ=K|L

|σ| uK
2
· nσ

−
∑

σ∈Eint∩EK
σ=K|L

|σ|uK · nσ −
∑

σ∈Eext∩EK
σ=K|L

|σ|uK · nσ


2

=
∑
K

1

|K|

 ∑
σ∈Eint∩EK
σ=K|L

|σ| uL − uK
2

· nσ −
∑

σ∈Eext∩EK
σ=K|L

|σ|uK · nσ


2

≤ 4
∑
K

1

|K|

 ∑
σ∈Eint∩EK
σ=K|L

|σ|2

4
(uL − uK)

2
+

∑
σ∈Eext∩EK
σ=K|L

|σ|2(uK)
2
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=
∑
K

∑
σ∈Eint∩EK
σ=K|L

|σ|2

|K|
(uL − uK)

2
+ 4

∑
K

∑
σ∈Eext∩EK
σ=K|L

|σ|2

|K|
(uK)

2

= 2
∑

σ∈Eint
σ=K|L

|σ|2

|K|
(uL − uK)

2
+ 4

∑
σ∈Eext
σ=K|L

|σ|2

|K|
(uK)

2
.

The usual regularity yields

‖∇D · u‖20,Ω ≤ C1

 ∑
σ∈Eint
σ=K|L

|σ|
dKL

(uL − uK)
2

+
∑

σ∈Eext
σ=K|L

|σ|
dKσ

(uK)
2


as required. �

Now, we can state the results for the discrete solution regularity.

Proposition 4.2 (Velocity regularity). Let (u, p) ∈ WX
D be the solution to

(30). Then, there exists C which depends on d,Ω such that the following bounds
hold:

(32) ‖u‖2l ≤ C‖f‖
2
0,Ω.

Moreover,

(33) J (p, p) ≤ C‖f‖20,Ω.

Proof. Setting v = u and q = p in (30), we get

a (u,u) + J (p, p) = (f ,u)0,Ω.

Hence, for Stokes we have

µ‖u‖21,D + µ‖∇D · u‖20,Ω + J (p, p) = (f ,u)0,Ω.

Using a Young inequality followed by the Poincaré inequality (12), we get

µ‖u‖21,D + J (p, p) ≤ diam (Ω)
2

2ε
‖f‖20,Ω +

ε

2
‖u‖21,D,

which leads to (
µ− ε

2

)
‖u‖21,D + J (p, p) ≤ diam (Ω)

2

2ε
‖f‖20,Ω

if ε < 2µ.
For Darcy, the choice of ε < 2α would give

α‖u‖20,Ω + J (p, p) ≤ 1

2ε
‖f‖20,Ω +

ε

2
‖u‖20,Ω.

Consequently, the combined choice ε < 2 min {µ, α} yields the required bounds.
�
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Proposition 4.3 (Pressure regularity). Let (u, p) ∈ WX
D be a solution

to (30). Then, there exists C, depending only on d,Ω, µ and θ, such that the
following bound holds:

(34) ‖p‖0,Ω ≤ C‖f‖0,Ω.

Proof. Let p ∈ HD(Ω) be given. We apply a classical consequence of a lemma

due to Nečas [12]. So, there exists w ∈ H1
0 (Ω)

d
such that

(35) ∇ ·w (x) = p(x) and ‖w‖1,Ω ≤ C1‖p‖0,Ω.
Next, we set:

(36) w(i)
σ =

1

|σ|

∫
σ

w(i) (x) dγ (x) , ∀σ ∈ E , i = 1, . . . , d.

Note that w
(i)
σ = 0 for all σ ∈ Eext and i = 1, . . . , d. We also define w ∈ HD (Ω)

d

by

(37) w
(i)
K =

1

|K|

∫
K

w(i) (x) dx, ∀K ∈M, i = 1, . . . , d.

Applying the results given in [4], there exists C2 > 0 such that

(38) ∀K ∈M,∀σ ∈ EK , |wK −wσ|2 ≤ C2
hK
|σ|

∫
K

|∇w (x)|2dx.

In addition, by the continuity of the interpolation operator πD (13), there exists
another real number C3 > 0 such that

(39) ‖w‖1,D ≤ C3‖w‖1,Ω ≤ C4‖p‖0,Ω.
Next,

(p,∇D ·w)0,Ω =
∑
K

pK
∑

σ∈Eint∩EK
σ=K|L

|σ| (wL + wK)

2
· nσ

=
∑
K

pK
∑

σ∈Eint∩EK
σ=K|L

|σ|wσ · nσ

+
∑
K

pK
∑

σ∈Eint∩EK
σ=K|L

|σ|
(

wL + wK

2
−wσ

)
· nσ

= A+B.

We have

A =
∑
K

pK
∑

σ∈Eint∩EK
σ=K|L

∫
σ

w (x) · nσdγ (x)

=
∑
K

pK

∫
∂K

w (x) · nσdγ (x)
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=
∑
K

pK

∫
K

∇ ·w (x) dx

= ‖p‖20,Ω,
and

B =
∑

σ∈Eint
σ=K|L

|σ| (pK − pL)

(
wL + wK

2
−wσ

)
· nσ.

Applying Cauchy-Schwarz inequality gives

|B|2 ≤

 ∑
σ∈Eint
σ=K|L

h |σ| (pK − pL)
2


 ∑
σ∈Eint
σ=K|L

|σ|
h

(
wL + wK

2
−wσ

)2



=

1

2

∑
K

∑
σ∈Eint∩EK
σ=K|L

h |σ| (pK − pL)
2


 ∑
σ∈Eint
σ=K|L

|σ|
h

(
wL + wK

2
−wσ

)2



=

1

2

∑
K

∑
σ∈Eint∩EK
σ=K|L

∫
σ

h [p]
2


 ∑
σ∈Eint
σ=K|L

|σ|
h

(
wL + wK

2
−wσ

)2



=

(
1

2

∑
K

∫
∂K\∂Ω

h [p]
2

) ∑
σ∈Eint
σ=K|L

|σ|
h

(
wL + wK

2
−wσ

)2

 .

Applying inequality (38) and the obvious inequality:(
wL + wK

2
−wσ

)2

≤ 1

2

(
(wK −wσ)

2
+ (wL −wσ)

2
)
,

we get

|B|2 ≤ 1

4δ
J(p, p)

∑
σ∈Eint
σ=K|L

|σ|
h

(
(wK −wσ)

2
+ (wL −wσ)

2
)

≤ 1

4δ
J(p, p)

∑
σ∈Eint
σ=K|L

|σ|
h

(
C2
hK
|σ|

∫
K

|∇w (x)|2 dx+ C2
hL
|σ|

∫
L

|∇w (x)|2dx
)

≤ J(p, p)
∑

σ∈Eint
σ=K|L

|σ|
h

(
C5

h

|σ|

∫
K∪L

|∇w (x)|2 dx
)

≤ C5J(p, p)‖w‖21,Ω

so that
|B| ≤ C6J (p, p)

1
2 ‖p‖0,Ω.
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Collecting all estimated terms, we obtain

(p,∇D ·w)0,Ω ≥ ‖p‖
2
0,Ω − C6J (p, p)

1
2 ‖p‖0,Ω.

Next, let us set v = w in (27a). We get

(p,∇D ·w)0,Ω = a (u,w)− (f ,w)0,Ω

so that

‖p‖20,Ω − C6J (p, p)
1
2 ‖p‖0,Ω ≤ a (u,w)− (f ,w)0,Ω.

Now, it remains to bound each term of the right hand side of this relation. To
this end, we have

(f ,w)0,Ω ≤ ‖f‖0,Ωdiam (Ω) ‖w‖1,D ≤ C7‖f‖0,Ω‖p‖0,Ω.

On the other hand, for Stokes we have

a (u,w) ≤ µ‖u‖1,D‖w‖1,D + µ‖∇D · u‖0,Ω‖∇D ·w‖0,Ω.

Applying inequalities (31), (32) and (39), we get

a (u,w) ≤ C8‖f‖0,Ω‖p‖0,Ω.

For Darcy, applying Cauchy-Schwarz inequality, (12), (32) and (39), we get

a (u,w) ≤ C9‖f‖0,Ω‖p‖0,Ω
which yields

‖p‖20,Ω − C6J (p, p)
1
2 ‖p‖0,Ω ≤ C10‖f‖0,Ω‖p‖0,Ω.

Consequently,

‖p‖0,Ω ≤ C10‖f‖0,Ω + C11J (p, p)
1
2 .

Finally, applying inequality (33) gives the claimed estimate. �

4.2. Scheme stability

The crucial point is to show that the stabilizing term J(p, p) enhances suffi-
ciently the degrees of freedom in the pressure field so that an inf-sup condition
is satisfied. In the analysis, we will use the following composite norm:

||| (u, p) |||2 = ‖(u, p)‖2WX
D

+ J (p, p) ∀ (u, p) ∈ WX
D .

The main result of this subsection is the following theorem which assures the
wellposedness of our FV scheme.

Theorem 4.4. The FV formulation (30) satisfies the following inf-sup condi-
tion:

(40) γ ||| (u, p) |||≤ sup
(v,q)∈WX

D

BD [(u, p) , (v, q)]

||| (v, q) |||
∀ (u, p) ∈ WX

D .
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Proof. 1) Control of ‖u‖2l :
Taking (v, q) = (u, p) in (29) we get

BD [(u, p) , (u, p)] = a (u,u) + J (p, p) .

Hence, we have for Stokes:

a (u,u) ≥ µ‖u‖21,D,

and for Darcy:

a (u,u) = α‖u‖20,Ω.
Thus,

(41) BD [(u, p) , (u, p)] ≥ Ca‖u‖2l + J (p, p) ,

where

Ca =

{
µ for Stokes,
α for Darcy.

2) Control of ‖p‖20,Ω:

Here, we use the same technique as in Proposition 4.3. Let p ∈ HD(Ω) be
given. We apply a classical consequence of a lemma due to Nečas [12]. There

exists w ∈ H1
0 (Ω)

d
such that

∇ ·w (x) = −p(x) and ‖w‖1,Ω ≤ C1‖p‖0,Ω.

Anew, we define w ∈ HD (Ω)
d

as in (36) and (37). In addition, by the continuity
of the interpolation operator πD there exists another real number C2 > 0 such
that

(42) ‖w‖1,D ≤ C2‖w‖1,Ω ≤ C3‖p‖0,Ω.

Again, taking (v, q) = (w, 0) in (29) we obtain

(43) BD [(u, p) , (w, 0)] = a (u,w)− (p,∇D ·w)0,Ω.

To proceed, let us bound each term of the right hand side of this relation. First,
for Stokes, we have

|a (u,w)| ≤ µ‖u‖1,D‖w‖1,D + µ‖∇D · u‖0,Ω‖∇D ·w‖0,Ω.

Applying inequality (31) and (42) yields

|a (u,v)| ≤ 2 µ2

ε
‖u‖21,D + ε C4‖p‖20,Ω.

Next, for Darcy we have

|a (u,w)| ≤ αC3diam (Ω) ‖u‖0,Ω‖p‖0,Ω

≤ 1

ε
‖u‖20,Ω + εC4‖p‖20,Ω

with C4 ≥ (αC3diam (Ω))
2
.



A UNIFIED STABILIZED FINITE VOLUME METHOD 1099

In both cases, it follows that

a (u,w) ≥ −Cb
ε
‖u‖2l − εC4‖p‖20,Ω,

where

Cb =

{
2µ2 for Stokes,

1 for Darcy.

For the second term in (43), we have

(p,∇D ·w)0,Ω =
∑
K

pK
∑

σ∈Eint∩EK
σ=K|L

|σ|wσ · n

+
∑
K

pK
∑

σ∈Eint∩EK
σ=K|L

|σ|
(

wL + wK

2
−wσ

)
· n

≤ − ‖p‖20,Ω +
1

ε
J (p, p) + εC5‖p‖20,Ω.

This yields

− (p,∇D ·w)0,Ω ≥ (1− ε C5) ‖p‖20,Ω −
1

ε
J (p, p) .

Gathering the above results, we finally get

(44) BD [(u, p) , (w, 0)] ≥ −Cb
ε
‖u‖2l + (1− ε ( C4 + C5)) ‖p‖20,Ω −

1

ε
J (p, p) .

3) Control of ‖∇D · u‖20,Ω:

Taking (v, q) = (0,∇D · u) in (29) gives

BD [(u, p) , (0,∇D · u)] = ‖∇D · u‖20,Ω + J (p,∇D · u) .

By the definition of discrete divergence operator, ∇D · u ∈ HD (Ω) is constant
on each element, and hence we have

‖∇D · u‖2K = |K| |(∇D · u)K |
2

which leads to

|σ|
|K|
‖∇D · u‖2K = |σ| |(∇D · u)K |

2
= ‖(∇D · u)K‖

2
σ
.

Thus, for all edges of K we have

C6‖∇D · u‖2K ≥ 4δh∂K‖(∇D · u)K‖
2
∂K
.

Using the latter together with, Cauchy-Schwarz and Young inequalities allows
the following bound for the stabilization term:

|J (p,∇D · u)| ≤
∑
K

∫
∂K\∂Ω

δh∂K |[p]| |[∇D · u]|ds
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≤
∑
K


(∫

∂K\∂Ω

δh∂K [p]
2
ds

) 1
2
(∫

∂K\∂Ω

δ h∂K |[∇D · u]|2ds

) 1
2


=
∑
K


(∫

∂K\∂Ω

δh∂K [p]
2
ds

) 1
2

δ1/2
∥∥∥h1/2

∂K [∇D · u]
∥∥∥
∂K


≤
∑
K

{
1

ε

(∫
∂K\∂Ω

δh∂K [p]
2
ds

)
+ εδ

∥∥∥h1/2
∂K [∇D · u]

∥∥∥2

0,∂K

}

≤ 1

ε
J (p, p) + εC7‖∇D · u‖20,Ω.

So,

(45) BD [(u, p) , (0,∇D · u)] ≥ (1− εC7) ‖∇D · u‖2Ω −
1

ε
J (p, p) .

Finally, we conclude by setting (v, q) = (βu + w, βp+∇D · u) with

β ≥
(
Cb
Ca

+ 2

)
1

ε
+

(
1

Ca
+ 1

)
(1− ε ( C4 + C5)) .

By combining the latter with (41), (44) and (45), it follows that

BD [(u, p) , (v, q)] = βBD [(u, p) , (u, p)] +BD [(u, p) , (w, 0)]

+BD [(u, p) , (0,∇D · u)]

≥ min

{
βCa −

Cb
ε
, 1− ε (C4 + C5) , 1− εC7 , β −

2

ε

}
||| (u, p) |||2.

Therefore,

BD [(u, p) , (v, p)] ≥ (1− ε (C4 + C5)) ||| (u, p) |||2.

We complete the proof by selecting ε sufficiently small, e.g. ε < 1
C4+C5

, and
noting that there also exists C8 such that

||| (u, p) |||≥ C8 ||| (v, q) ||| . �

4.3. Error estimates

Here, we establish error estimates for the discrete FV solution in the used
energy norms. Let us start with the Stokes part. The fundamental result of
error estimates is a consequence based on the following intermediate proposition
we shall prove first.

Proposition 4.5. Let (u, p) ∈
(
H2 (Ω) ∩H1

0 (Ω)
)d × H1 (Ω) and (u, p) ∈

HD (Ω)
d×HD (Ω) be the respective solutions of (1a)-(1b) and (30) for Stokes.
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Then, for any ε < 1
2min {µ, 1} there exists a constant C, depending only on

d, µ,Ω and θ, such that

‖u− πDu‖1,D ≤ Ch
2
(
‖u‖2,Ω + ‖p‖1,Ω

)
,(46)

J (p, p) ≤ Ch2
(
‖u‖2,Ω + ‖p‖1,Ω

)
.(47)

Proof. First, let (û, p̂) ∈ HD(Ω)
d×HD(Ω) be defined by û = πDu and p̂ = πDp.

Integrating (1a) on K ∈M gives

−µ
∫
K

∇ · (∇u)− µ
∫
K

∇(∇ · u) +

∫
K

∇p =

∫
K

f .

The incompressibility equation ∇ · u = 0 implies

(48) −µ
∑
σ∈EK

∫
σ

∇u · nσ +
∑
σ∈EK

∫
σ

pnσ =

∫
K

f .

Now, let us introduce for K ∈M the following consistency residuals:
i) R∆,KL = 1

dKL
(ûL − ûK)− 1

|σ|
∫
σ
∇u ·nσ for σ ∈ E int∩EK (σ = K|L),

ii) R∆,σ = 1
dKσ

(0− ûK)− 1
|σ|
∫
σ
∇u · nσ for σ ∈ Eext ∩ EK ,

iii) R∇,KL = 1
2 (p̂L + p̂K)− 1

|σ|
∫
σ
p for σ ∈ E int ∩ EK (σ = K|L),

iv) R∇,KL = p̂K − 1
|σ|
∫
σ
p for σ ∈ Eext ∩ EK .

Using these notations and the relation
∑
σ∈EK |σ|nσ = 0, from (48) we get

− µ

 ∑
σ∈Eint∩EK
(σ=K|L)

|σ|
dKL

(ûL − ûK) +
∑

σ∈Eext∩EK

|σ|
dKσ

(0− ûK)


+

∑
σ∈Eint∩EK
(σ=K|L)

|σ| p̂L − p̂K
2

nσ

=

∫
K

f + |K|RK ,

with

RK = −µ 1

|K|
∑
σ∈EK

|σ|R∆ +
1

|K|
∑
σ∈EK

|σ|R∇nσ.

Set e = û − u and ε = p̂ − p. Subtracting (25a) from the above equation, we
then get

−µ
∑
σ∈Eint∩EK
(σ=K|L)

|σ|
dKL

(eL − eK)− µ
∑
σ∈Eext∩EK

|σ|
dKσ

(0− eK)

+µ (∇D (∇D · u))K +
∑
σ∈Eint∩EK
(σ=K|L)

|σ| εL−εK2 nσ = |K|RK .
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For all v ∈ HD (Ω)
d
, we get

(49) µ[e,v]1,D − µ
∫

Ω

(∇D · u) (∇D · v)−
∫

Ω

ε (∇D · v) =

∫
Ω

R · v.

By setting v = e in this last equation, we get:

(50) µ‖e‖21,D+µ‖∇D · u‖20,Ω−
∫

Ω

ε (∇D · e) =

∫
Ω

R·e+µ

∫
Ω

(∇D · u) (∇D · û).

Now, let us integrate (1b) on K ∈M. This gives∑
σ∈EK

∫
σ

u · nσ = 0.

Since u vanishes on the boundary of Ω, we obtain∑
σ∈Eint∩EK
(σ=K|L)

|σ|
2

(ûL + ûK) · nσ =
∑

σ∈Eint∩EK
(σ=K|L)

|σ|Rdiv,KL ∀K ∈M

with

Rdiv,KL =

(
1

2
(ûL + ûK)− 1

|σ|

∫
σ

u

)
· nσ.

Then, subtracting the relation (25b) from the above equation gives∑
σ∈Eint∩EK
(σ=K|L)

|σ|
2

(eL + eK) · nσ =
∑

σ∈Eint∩EK
(σ=K|L)

|σ|Rdiv,KL + 2δ
∑

σ∈Eint∩EK
(σ=K|L)

|σ| h [p].

This yields∫
Ω

q (∇D · e) =
∑

σ∈Eint
(σ=K|L)

|σ|Rdiv,KL (qK − qL) + J (p, q) ,

and setting q = ε in this relation gives

(51)

∫
Ω

ε (∇D · e) =
∑

σ∈Eint
(σ=K|L)

|σ|Rdiv,KL (εK − εL) + J (p, ε) .

Gathering (50) and (51), we get

µ ‖e‖21,D + µ ‖∇D · u‖20,Ω + J (p, p)(52)

=

∫
Ω

R · e + µ

∫
Ω

(∇D · u) (∇D · û)

+
∑

σ∈Eint
(σ=K|L)

|σ|Rdiv,KL (εK − εL) + J (p, p̂) .
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Next, let us study the terms at the right-hand side of (52). The first term is∫
Ω

R · e =
∑
K

|K|RK · eK

= −µ
∑
K

∑
σ∈EK

|σ|R∆ · eK +
∑
K

∑
σ∈EK

|σ|R∇nσ · eK(53)

= A+B.

By virtue of interpolation results proven in [5], we obtain

A = − µ
∑
K

eK ·
∑

σ∈Eint∩EK
(σ=K|L)

|σ|
dKL

(ûL − ûK)− 1

|σ|

∫
σ

∇u · nσ

− µ
∑

σ∈Eext∩EK

|σ|
dKσ

(0− ûK)− 1

|σ|

∫
σ

∇u · nσ

= − µ
∑

σ∈Eint
(σ=K|L)

(eK − eL) ·
(
|σ|
dKL

(ûL − ûK)− 1

|σ|

∫
σ

∇u · nσ
)

− µ
∑

σ∈Eext
(σ∈εK)

eK ·
(
|σ|
dKσ

(0− ûK)− 1

|σ|

∫
σ

∇u · nσ
)
.

By using Cauchy-Schwarz inequality and the obvious fact that
√
a
√
b+
√
c
√
d ≤√

a+ c
√
b+ d, it follows that

|A| ≤ µ‖e‖1,D


∑

σ∈Eint
(σ=K|L)

dKL
|σ|

(|σ|R∆,KL)
2

+
∑

σ∈Eext
(σ∈εK)

dKσ
|σ|

(|σ|R∆,σ)
2


1
2

.

Now, consistency error estimates shown in [5], yield

|A| ≤ C2h‖e‖1,D‖u‖2,Ω.

Repeating the same steps as above, reordering the summations and using the
Cauchy-Schwarz inequality and consistency error estimates (cf. [5]), we get

|B| ≤ C3h ‖e‖1,D‖p‖1,Ω.

Getting back to (53), it follows that

(54)

∫
Ω

R · e ≤ C2
h2

ε
‖u‖22,Ω + 2ε‖e‖21,D + C3

h2

ε
‖p‖21,Ω

for all ε > 0.
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Using Cauchy-Schwarz inequality, (31) and (13) on the second term in (52),
we get

(55) µ

∫
Ω

(∇D · u) (∇D · û) ≤ C4
h2

ε
‖u‖22,Ω + ε‖∇D · u‖20,Ω.

Let us decompose the third term in (52) to get∑
σ∈Eint
σ=K|L

|σ|Rdiv,KL (εK − εL)

=
∑

σ∈Eint
σ=K|L

|σ|Rdiv,KL (p̂K − p̂L) +
∑

σ∈Eint
σ=K|L

|σ|Rdiv,KL (pK − pL) .

We have ∑
σ∈Eint
σ=K|L

|σ|Rdiv,KL (p̂K − p̂L)

≤

 ∑
σ∈Eint
σ=K|L

|σ|
dKL

(p̂K − p̂L)
2


1
2
 ∑
σ∈Eint
σ=K|L

dKL
|σ|

(|σ|Rdiv,KL)
2


1
2

≤ C5h
2|p̂|1,D‖u‖2,Ω

≤ C5h
2

(
1

ε
‖u‖22,Ω + ε‖p‖21,Ω

)
(56)

by making use of useful interpolation results and consistency error estimates
(cf. [5]).

Likewise,

∑
σ∈Eint
σ=K|L

|σ|Rdiv,KL (pK − pL) ≤ J (p, p)
1
2

 1

2δh

∑
σ∈Eint
σ=K|L

1

|σ|
(|σ|Rdiv,KL)

2


1
2

≤ C6
h2

ε
‖u‖22,Ω + εJ (p, p) .(57)

On the other hand, Cauchy-Schwarz inequality implies

J (p, p̂) ≤ J (p, p)
1
2 J (p̂, p̂)

1
2

= J (p, p)
1
2

2δ
∑

σ∈Eint
σ=K|L

|σ|h(p̂K − p̂L)
2


1
2

≤
√

2δhJ (p, p)
1
2 |p̂|1,D
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≤ εJ (p, p) + C7
h2

ε
‖p‖21,Ω.(58)

Gathering (54)-(58) yields the control error inequality:

(µ− 2ε) ‖e‖21,D + (µ− ε) ‖∇D · u‖20,Ω + (1− 2ε) J (p, p)

≤ C8h
2max

{
1

ε
, ε

} (
‖u‖22,Ω + ‖p‖21,Ω

)
.(59)

It is clear that choosing ε sufficiently small, e.g. ε < 1
2min{µ, 1}, the latter

implies (46) and (47). �

Theorem 4.6. In addition to assumptions of Proposition (4.5), let uD be the

function of HD (Ω)
d

defined by: uDK = u (xK) (K ∈M). Then,

(60) ‖u− uD‖1,D ≤ Ch
(
‖u‖2,Ω + ‖p‖1,Ω

)
and

‖u− u‖0,Ω ≤ Ch
(
‖u‖2,Ω + ‖p‖1,Ω

)
,(61)

‖p− p‖0,Ω ≤ Ch
(
‖u‖2,Ω + ‖p‖1,Ω

)
.(62)

Proof. First of all, notice that (60) is straightforwardly deduced from the def-
inition of uD and (46) by applying the triangular inequality and a classical
interpolation result (cf. [5]). Likewise, (61) follows by similar arguments from
the triangular inequality, interpolation results and the discrete Poincaré in-
equality(12). It remains to establish (62).

Here again, we will follow the methodology already used in the proof of
Proposition 4.3.

Using
∫

Ω
p̂ (x)dx = 0 and therefore

∫
Ω
ε (x) = 0, let w ∈ H1

0 (Ω)
d

be given
such that

∇ ·w (x) = ε (x) and ‖w‖1,Ω ≤ C15‖ε‖0,Ω.
Next, let us define w as in (36) and (37). This gives

‖ε‖20,Ω ≤ (ε,∇D ·w)0,Ω + J (ε, ε)
1
2C16‖ε‖0,Ω,

so that

‖ε‖20,Ω ≤ (ε,∇D ·w)0,Ω +
1

ε
J (p̂, p̂) +

1

ε
J (p, p) + εC1‖ε‖20,Ω

≤ (ε,∇D ·w)0,Ω + C2
h2

ε
‖p‖21,Ω +

1

ε
J (p, p) + εC1‖ε‖20,Ω.

Choose w as a test function in (49). We get∫
Ω

ε (∇D ·w) = µ[e,w]1,D − µ
∫

Ω

(∇D · u) (∇D ·w)−
∫

Ω

R·w.

Gathering the latter with the above relations yields

‖ε‖20,Ω ≤ C3‖e‖1,D‖ε‖0,Ω + C4‖u‖1,D‖ε‖0,Ω + C5h‖ε‖0,Ω
(
‖u‖22,Ω + ‖p‖21,Ω

)
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+ C2
h2

ε
‖p‖21,Ω +

1

ε
J (p, p) + εC1‖ε‖20,Ω

≤ C3‖e‖1,D‖ε‖0,Ω + C4‖u− πDu‖1,D‖ε‖0,Ω + C4‖πDu‖1,D‖ε‖0,Ω

+ C5h‖ε‖1,D
(
‖u‖2,Ω + ‖p‖1,Ω

)
+ C2

h2

ε
‖p‖21,Ω

+
1

ε
J (p, p) + εC1‖ε‖20,Ω.

Finally, applying successively Young inequality, (13), (46), (47) and by the
continuity of the interpolation operator gives the desired result. �

The corresponding result on error estimates for the Darcy part is now es-
tablished.

Theorem 4.7. Let (u, p) ∈
(
H1 (Ω) ∩H1

0 (Ω)
)d×H1 (Ω) and (u, p) ∈ HD (Ω)

d

×HD (Ω) be the respective solutions of (1a)-(1b) and (30) for Darcy. Then,
for any ε < 1

2 there exists C, depending only on d,Ω, δ and θ, such that

‖u− πDu‖0,Ω ≤ Ch
(
‖u‖1,Ω + ‖p‖1,Ω

)
,(63)

‖u− u‖0,Ω ≤ Ch
(
‖u‖1,Ω + ‖p‖1,Ω

)
,(64)

‖p− p‖0,Ω ≤ Ch
(
‖u‖1,Ω + ‖p‖1,Ω

)
.(65)

Proof. To start, a control equation on errors similar to (59) is first shown.
Let us define (û, p̂) ∈ Hd

D ×HD by û = πDu and p̂ = πDp. Integrating (1a)
on K ∈M gives

(66) α

∫
K

u +

∫
K

∇p = α

∫
K

u +
∑
σ∈EK

∫
σ

pnσ =

∫
K

f .

Anew, we introduce for any K ∈M the following consistency residuals:

i) R0,K = αûK − α
|K|
∫
K

u,

ii) R∇,KL = 1
dσ

(p̂L + p̂K)− 1
|σ|
∫
σ
p for σ ∈ E int ∩ EK (σ = K|L) ,

iii) R∇,Kσ = p̂K − 1
|σ|
∫
σ
p for σ ∈ Eext ∩ EK .

Using these notations and the relation
∑
σ∈EK |σ|nσ = 0, from (66) we get

α |K| ûK +
∑

σ∈Eint∩EK
σ=K|L

|σ| p̂L − p̂K
2

nσ =

∫
K

f + |K|RK ,

with

RK = R0,K +
1

|K|
∑
σ∈EK

|σ|R∇nσ.
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Set e = û − u and ε = p̂ − p. Subtracting (25a) from the above equation, it
follows that

α |K| eK +
∑

σ∈Eint∩EK
σ=K|L

|σ| εL − εK
2

nσ = |K|RK .

For all v ∈ HD (Ω)
d
, we have

(67) α

∫
Ω

e · v −
∫

Ω

ε (∇D · v) =

∫
Ω

R · v,

which gives for v = e

α‖e‖20,Ω −
∫

Ω

ε (∇D · e) =

∫
Ω

R · e.

Using (51), we get

(68) α‖e‖20,Ω + J (p, p) =

∫
Ω

R · e +
∑

σ∈Eint
σ=K|L

|σ|Rdiv,KL (εK − εL) + J (p, p̂) .

Let us study the terms in the right-hand side of the above equation. The first
term is ∫

Ω

R · e =
∑
K

|K|R0,K · eK +
∑
K

∑
σ∈EK

|σ|R∇nσ · eK

≤

(∑
K

1

|K|

(
|K|R0,K

)2
) 1

2

‖e‖0,Ω + C2h‖e‖0,Ω‖p‖1,Ω

from the result shown in (54). But,

|K|R0,K ≤ C1|K|
1
2hK‖u‖1,wK ,

so that ∫
Ω

R · e ≤ C3h‖e‖0,Ω‖u‖1,Ω + C2h‖e‖0,Ω‖p‖1,Ω

≤ C3
h2

ε
‖u‖21,Ω + 2ε‖e‖20,Ω + C2

h2

ε
‖p‖21,Ω.(69)

Finally, using like (56), (57) and (58) gives (63). Using the same technique
as in Theorem 4.6, we deduce (64) and (65). This completes the proof of the
theorem. �

5. Numerical tests

In this section we report some representative results of numerical experi-
ments for Stokes and Darcy models of an incompressible flow. All test com-
putations were performed under Matlab. The main objective is to check the
validity of the error estimates established in the theoretical convergence study
by means of test problems with given analytical solutions. Two numerical
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examples are devoted for a study of discrete solution accuracy and conver-
gence rates for both Stokes and Darcy flows. The computational domain is
Ω =]0, 1[×]0, 1[ and the problem (1a)-(1b) is to be discretized and solved using
uniform partitionings of Ω into n × n equal squares (n = 10, . . . , 100). More-
over, in order to restore a unique pressure field a zero mean pressure is imposed
on Ω. In all cases, the source term f is chosen such that equations (1a)-(1b)
hold.

The velocity and pressure errors are defined respectively as:

e
(i)
K = u

(i)
K − u

(i)
K (xK), εK = pK − pK(xK).

The following discrete error norms are used for the investigation of convergence
rates:

‖e‖1,D =

√√√√ 2∑
i=1

[
e(i), e(i)

]
D,

‖e‖0,Ω =

√√√√ 2∑
i=1

∫
Ω

(
e(i)
)2
dΩ,

‖ε‖0,Ω =

√∫
Ω

ε2dΩ.

5.1. Problem I

The first numerical example is a study of both Stokes and Darcy problems
with the same exact velocity and pressure fields:

u1 (x, y) = 2000(x− x2)2
(
y − y2

)
(1− 2y) ,

u2 (x, y) = −2000(y − y2)2
(
x− x2

)
(1− 2x) ,

p(x, y) = 100(x2 + y2 − 2

3
).

We set δ = 0.5. In Fig. 1 and Fig. 2, the approximate velocity vectors and
pressure elevations are shown on the 80×80 partitioning for Stokes with µ = 0.1
and for Darcy with α = 100 repectively. The displayed graphs are in excellent
agreement with the exact solution plots. The computed convergence rates are
presented in Fig. 3. Better results than theoretical rates predicted by the above
study have been obtained. For Stokes flow, the convergence rates are near to
3/2 for the both the velocity in ‖·‖1,D norm and pressure in L2 norm, while the

computed rate is close to 2 for the velocity in L2 norm. For Darcy flow, the
convergence rate is near to 3/2 for the pressure in L2 norm, whereas it is close
to 1 for the velocity in the same norm. This unexpected fact deserves further
investigation.
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Figure 1. Approximate velocity vectors and pressure eleva-
tion for Stokes with µ = 0.1.
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Figure 2. Approximate velocity vectors and pressure eleva-
tion for Darcy with α = 100.
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Figure 3. Convergence history for Stokes (left) µ = 0.1 and
for Darcy (right) with α = 100.

5.2. Problem II

The second numerical test is devoted to study the same features when the
exact velocity and pressure are given respectively for the Stokes flow by:

u1 (x, y) = π sin(2πy) sin2 (πx) ,
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u2 (x, y) = −π sin(2πx) sin2 (πy) ,

p(x, y) = sin(2πx) sin(2πy)

and for the Darcy flow by:

u1 (x, y) = 1/2 sin(2πy) sin 2 (πx) ,

u2 (x, y) = −1/2 sin(2πx) sin2 (πy) ,

p(x, y) = 2x− 4y3.

Now, we set δ = 10. The approximate velocity vectors and pressure elevations
on the 80×80 partitioning for Stokes with µ = 1 and for Darcy with α = 10 are
displayed in Fig. 4 and Fig. 5 respectively. The behavior is again remarkable.
According to the convergence error history shown in Fig. 6, predicted optimal
rates are widely achieved for both Stokes and Darcy cases and, here also, better
results than the predicted rates are attained.
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Figure 4. Approximate velocity vectors and pressure eleva-
tion for Stokes with µ = 1.
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Figure 5. Approximate velocity vectors and pressure eleva-
tion for Darcy with α = 10.
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Figure 6. Convergence history for Stokes (left) µ = 1 and for
Darcy (right) with α = 10.

6. Conclusions

The aim of this paper is to solve numerically the uncoupled Stokes and Darcy
problems for incompressible fluid with a unique FV scheme. We presented a
complete analysis of the proposed cell-centered FVM using pressure jump sta-
bilization. Optimal convergence rates were derived for both Stokes and Darcy
cases using the natural norms, results that were confirmed by the numerical
experiments. The simplicity and resulting efficiency of the present scheme sug-
gests that it will be a competitive alternative for existing FV techniques.
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