• Title/Summary/Keyword: Mathematical Computing

Search Result 341, Processing Time 0.028 seconds

Teaching Factorization in School Mathematics (학교수학에서 인수분해의 지도)

  • Choi, Sang-Ki;Lee, Jee-Hae
    • The Mathematical Education
    • /
    • v.48 no.1
    • /
    • pp.81-91
    • /
    • 2009
  • This paper focuses on two problems in the 10th grade mathematics, the rational zero theorem and the content(the integer divisor) of a polynomial Among 138 students participated in the problem solving, 58 of them (42 %) has used the rational zero theorem for the factorization of polynomials. However, 30 of 58 students (52 %) consider the rational zero theorem is a mathematical fake(false statement) and they only use it to get a correct answer. There are three different types in the textbooks in dealing with the content of a polynomial with integer coefficients. Computing the greatest common divisor of polynomials, some textbooks consider the content of polynomials, some do not and others suggest both methods. This also makes students confused. We suggests that a separate section of the rational zero theorem must be included in the text. As for the content of a polynomial, we consider the polynomials are contained in the polynomial ring over the rational numbers. So computing the gcd of polynomials, guide the students to give a monic(or primitive) polynomial as ail answer.

  • PDF

Multi-communication layered HPL model and its application to GPU clusters

  • Kim, Young Woo;Oh, Myeong-Hoon;Park, Chan Yeol
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.524-537
    • /
    • 2021
  • High-performance Linpack (HPL) is among the most popular benchmarks for evaluating the capabilities of computing systems and has been used as a standard to compare the performance of computing systems since the early 1980s. In the initial system-design stage, it is critical to estimate the capabilities of a system quickly and accurately. However, the original HPL mathematical model based on a single core and single communication layer yields varying accuracy for modern processors and accelerators comprising large numbers of cores. To reduce the performance-estimation gap between the HPL model and an actual system, we propose a mathematical model for multi-communication layered HPL. The effectiveness of the proposed model is evaluated by applying it to a GPU cluster and well-known systems. The results reveal performance differences of 1.1% on a single GPU. The GPU cluster and well-known large system show 5.5% and 4.1% differences on average, respectively. Compared to the original HPL model, the proposed multi-communication layered HPL model provides performance estimates within a few seconds and a smaller error range from the processor/accelerator level to the large system level.

A Principle-based Korean / Japanese Machine Translation System : NARA (원리에 따른 한 / 일 기계번역 시스팀 : NARA)

  • Jeong, Hui-Seong
    • ETRI Journal
    • /
    • v.10 no.3
    • /
    • pp.140-156
    • /
    • 1988
  • This paper presents methodological and theoretical principles for constructing a machine thanslation system between Korean and Japanese. We focus our discussion on the real time computing problem of the machine translation system. This problem is characterized in the time and space complexity during the machine translation. The NARA system has the real time computing algorithm which is based on a mathematical model integrating the linguistic competence and the linguistic performance of both languages, with consequence that the system NARA has also the functional characteristic : the two-way translation mechanism.

  • PDF

On a Class of Analytic Functions Related to the Starlike Functions

  • Gao, Chunyi;Zhou, Shiqiong
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.123-130
    • /
    • 2005
  • In this paper we discuss a class of analytic functions related to the starlike functions in the unit disk. We prove that this class belongs to the class of close-to-convex functions, we obtain the sharp coefficient upper bounds and distortion theorem of this class, we also get the convexity radius of this class.

  • PDF

A NOTE ON GT-ALGEBRAS

  • Kim, Jae-Doek;Kim, Young-Mi;Roh, Eun-Hwan
    • The Pure and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.59-68
    • /
    • 2009
  • We introduce the notion of GT-algebras as a generalization of the concept of Tarski algebras. We introduce the notion of GT-filters in GT-algebras, and we prove some properties of GT-filters.

  • PDF

Zero-Correlation Linear Cryptanalysis of Reduced Round ARIA with Partial-sum and FFT

  • Yi, Wen-Tan;Chen, Shao-Zhen;Wei, Kuan-Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.280-295
    • /
    • 2015
  • Block cipher ARIA was first proposed by some South Korean experts in 2003, and later, it was established as a Korean Standard block cipher algorithm by Korean Agency for Technology and Standards. In this paper, we focus on the security evaluation of ARIA block cipher against the recent zero-correlation linear cryptanalysis. In addition, Partial-sum technique and FFT (Fast Fourier Transform) technique are used to speed up the cryptanalysis, respectively. We first introduce some 4-round linear approximations of ARIA with zero-correlation, and then present some key-recovery attacks on 6/7-round ARIA-128/256 with the Partial-sum technique and FFT technique. The key-recovery attack with Partial-sum technique on 6-round ARIA-128 needs $2^{123.6}$ known plaintexts (KPs), $2^{121}$ encryptions and $2^{90.3}$ bytes memory, and the attack with FFT technique requires $2^{124.1}$ KPs, $2^{121.5}$ encryptions and $2^{90.3}$ bytes memory. Moreover, applying Partial-sum technique, we can attack 7-round ARIA-256 with $2^{124.6}$ KPs, $2^{203.5}$ encryptions and $2^{152}$ bytes memory and 7-round ARIA-256 employing FFT technique, requires $2^{124.7}$ KPs, $2^{209.5}$ encryptions and $2^{152}$ bytes memory. Our results are the first zero-correlation linear cryptanalysis results on ARIA.

ON THE STUDY OF SOLUTION UNIQUENESS TO THE TASK OF DETERMINING UNKNOWN PARAMETERS OF MATHEMATICAL MODELS

  • Avdeenko, T.V.;Je, Hai-Gon
    • East Asian mathematical journal
    • /
    • v.16 no.2
    • /
    • pp.251-266
    • /
    • 2000
  • The problem of solution uniqueness to the task of determining unknown parameters of mathematical models from input-output observations is studied. This problem is known as structural identifiability problem. We offer a new approach for testing structural identifiability of linear state space models. The approach compares favorably with numerous methods proposed by other authors for two main reasons. First, it is formulated in obvious mathematical form. Secondly, the method does not involve unfeasible symbolic computations and thus allows to test identifiability of large-scale models. In case of non-identifiability, when there is a set of solutions to the task, we offer a method of computing functions of the unknown parameters which can be determined uniquely from input-output observations and later used as new parameters of the model. Such functions are called parametric functions capable of estimation. To develop the method of computation of these functions we use Lie group transformation theory. Illustrative example is given to demonstrate applicability of presented methods.

  • PDF

ON EIGENSHARPNESS AND ALMOST EIGENSHARPNESS OF LEXICOGRAPHIC PRODUCTS OF SOME GRAPHS

  • Abbasi, Ahmad;Taleshani, Mona Gholamnia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.685-695
    • /
    • 2022
  • The minimum number of complete bipartite subgraphs needed to partition the edges of a graph G is denoted by b(G). A known lower bound on b(G) states that b(G) ≥ max{p(G), q(G)}, where p(G) and q(G) are the numbers of positive and negative eigenvalues of the adjacency matrix of G, respectively. When equality is attained, G is said to be eigensharp and when b(G) = max{p(G), q(G)} + 1, G is called an almost eigensharp graph. In this paper, we investigate the eigensharpness and almost eigensharpness of lexicographic products of some graphs.

Middle School Students' Perceptions about and Mathematical Proficiency in Constructed-Response Items (수학 논술형 문항에 대한 중학생들의 인식 및 수학적 숙련도)

  • Park, SeokSun;Kim, Gooyeon
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.1
    • /
    • pp.63-86
    • /
    • 2013
  • This study aimed to explore how middle school students perceive constructed-response items and how they solve those items and the patterns of the processes. For this purpose, data were collected from middle school students through survey, written responses on those items that were developed for this particular purpose, and interviews. The survey data were analyzed by using Excel and the written responses and interview data qualitatively. The findings about the students' perceptions about the constructed-response items suggested that the middle school students perceive the items primarily as involving writing solutions logically(17%) and being capable of explaining while solving them(7%). The most difficulties they encounter when solving the items were understanding(26%), applying(12%), mathematical writing(25%), computing(23%), and reasoning(14%). The findings about the students' mathematical proficiencies showed that they made an error most in reasoning (35%), then in understanding(31%), in applying(9%), and least in computing(3%).

  • PDF