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ON EIGENSHARPNESS AND ALMOST EIGENSHARPNESS

OF LEXICOGRAPHIC PRODUCTS OF SOME GRAPHS
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Abstract. The minimum number of complete bipartite subgraphs

needed to partition the edges of a graph G is denoted by b(G). A known
lower bound on b(G) states that b(G) ≥ max{p(G), q(G)}, where p(G)

and q(G) are the numbers of positive and negative eigenvalues of the ad-
jacency matrix of G, respectively. When equality is attained, G is said

to be eigensharp and when b(G) = max{p(G), q(G)} + 1, G is called an

almost eigensharp graph. In this paper, we investigate the eigensharpness
and almost eigensharpness of lexicographic products of some graphs.

1. Introduction

All graphs in this paper are finite undirected simple graphs. Let G be a
graph with vertex set V (G) and edge set E(G). The distance between two
distinct vertices x and y of G, denoted by d(x, y), is the length of a shortest
path connecting them, if such a path exists; otherwise, we set d(x, y) :=∞. If
x = y, we assume that d(x, y) = 0. The diameter of a graph G is the supremum
of the set {d(x, y) |x and y are distinct vertices of G}, which is denoted by
diam(G). G is connected if there is a path between any two distinct vertices
and is complete if it is connected with diameter one. A clique in a graph is a set
of pairwise adjacent vertices while an independent set is a set of pairwise non-
adjacent vertices. A perfect matching of G is a set of independent edges which
covers all vertices of G. G is bipartite if V (G) is the union of two disjoint
independent sets called partite sets of G. A complete bipartite graph or a
biclique is a special kind of bipartite graph where every vertex of the first set
is adjacent to every vertex of the second set. When the sets have size r and s,
the biclique is denoted by Kr,s. The complete bipartite graphs K1,s are called
stars. The adjacency matrix of G denoted by A, is a square matrix of order
n, with ij-th entry equals to 1 if vivj is an edge of G and 0, otherwise. The
eigenvalues and the spectrum of A are called the eigenvalues and the spectrum
of G, respectively. Since A is real and symmetric, its eigenvalues are real. If
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all of the eigenvalues of G are integers, then G is called an integral graph. We
denote the spectrum of G by

σA(G) = {γ1(G)
[g1], γ2(G)

[g2], . . . , γs(G)
[gs]},

where γ1(G) > γ2(G) > · · · > γs(G) are distinct eigenvalues of G and γi(G)
[gi]

means that γi has multiplicity gi. The biclique partition number, the minimum
number of bicliques needed to partition the edges of a graph G is denoted by
b(G). It is an important invariant in graph theory and has been the topic
of many investigations of researchers in the last few years, see [3–5] and [9].
This parameter have numerous applications to automata and language theories,
partial orders, artificial intelligence and biology. In 1971, Graham and Pollak
[4], proved that b(Kn) = n−1. Witsenhausen (c.f. [4]) showed that b(G) ≥ h(G)
where h(G) = max{p(G), q(G)} and p(G) and q(G) are the numbers of positive
and negative eigenvalues of G, respectively. Let s(G) denote the number of zero
eigenvalues of G. We say that G is eigensharp if the eigenvalue bound is sharp,
i.e., b(G) = h(G), and it is almost eigensharp if b(G) = h(G)+1. Several classes
of graphs including trees, cycles Cn with n = 4 or n 6= 4k, prisms Cn�K2 with
n 6= 3k and some Cartesian products of cycles are shown to be eigensharp
(c.f. [9]). Ghorbani and Maimani in [3], have studied the eigensharpness of
some graphs with at most one cycle and products of some families of graphs.
They also showed that Pm ∨ Pn, Cm ∨ Pn for m ≡ 2, 3 (mod 4) and Qn, when
n is an odd number, are eigensharp.

It is shown in [9] that b(G ∗H) ≤ 2b(G)b(H), where ∗ is the weak product.
In this paper, we are interested in finding bounds on biclique partition number
of lexicographic product of some graphs from their spectrum. For two graphs
G and H, their lexicographic product (also known as composition) G[H] is the
graph whose vertex set is the Cartesian product V (G)×V (H), with two vertices
(x1, y1) and (x2, y2) being adjacent whenever x1 ∼ x2 in G, or x1 = x2 and
y1 ∼ y2 in H. For more details about lexicographic product see [6,8]. In Section
2, first we obtain a bound for the biclique partition number of lexicographic
product of two graphs and then characterize the eigensharp property for lex-
icographic products of some special graphs. We also show that the Cocktail
Party graph CP2m, a circulant graph obtained by removing 2m disjoint edges
from K4m is eigensharp. In Section 3, we discuss the eigensharpness of power
of some graph compositions.

2. Eigensharpness of lexicographic products of some graphs

The lexicographic product of graphs was introduced in 1959 by Harary in
[7], and independently, in the same year, by Sabidussi [10]. It is clear from
the definition that if G and H are two nontrivial graphs with at least two
vertices, then G[H] is connected if and only if G is connected. The lexicographic
product of graphs is a binary operation which may not be commutative, even
when both factors are connected; but it satisfies the associative law. Also
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it is clear that if |V (G)| = m and |V (H)| = n, then |V (G[H])| = mn and
|E(G[H])| = m|E(H)| + n2|E(G)|. Recently, Abreu et al. [1] determined the
spectrum of G[H] when H is regular. We start with the following result. See
[1, Corollary 2.2].

Lemma 2.1. If G is a graph of order m with the spectrum

σA(G) = {γ1(G)
[g1], γ2(G)

[g2], . . . , γs(G)
[gs]}

and if H is an r-regular graph of order n with the spectrum

σA(H) = {r, γ2(H)
[h2], . . . , γt(H)

[ht]},
then

σA(G[H]) = {(nγ1(G) + r)[g1], . . . , (nγs(G) + r)[gs]}

∪ {γ2(H)[mh2], . . . , γt(H)[mht]}.

Definition. A decomposition of a graph G is a set of subgraphs G1, G2, . . . , Gr
that partitions the edges of G such that

⋃
1≤i≤r E(Gi) = E(G) and E(Gi) ∩

E(Gj) = ∅ for all i 6= j. If there is a decomposition G1, G2, . . . , Gr for G, we say
thatG is decomposed byG1, G2, . . . , Gr and denote it byG = G1+G2+· · ·+Gr.

Lemma 2.2. Let G and H be two graphs on m and n vertices, respectively.
Then

b(G[H]) ≤ b(G) +mb(H).

Proof. Let Gi ⊆ V (G) and Hi ⊆ V (H) such that gi ∈ Gi, hi ∈ Hi for i = 1, 2
and b(G), b(H) be the minimum number of bicliques of G and H, respectively.
Here, K|G1|,|G2| denotes a biclique with G1 and G2 as partite sets. In order to
get the upper bound, we only need to show that G[H] can be decomposed by
b(G) +mb(H) bicliques. It follows from the definition of G[H] that every edge
g1g2 in G determines four edges (g1, h1)(g2, h1), (g1, h2)(g2, h2), (g1, h1)(g2, h2)
and (g1, h2)(g2, h1) in G[H]. If K|G1|,|G2| is a biclique of G which contains g1g2,
then the complete bipartite subgraph K|G1×V (H)|,|G2×V (H)| of G[H] contains
all these four edges except those edges (g, h1)(g, h2) where h1h2 ∈ E(H). Fur-
thermore, if g1 = g2 and h1h2 is an edge of H which belongs to the subgraph
K|H1|,|H2| of H, then the biclique K|g1×H1|,|g1×H2| of G[H] contains the associ-
ated edge (g1, h1)(g1, h2). Therefore, b(G) + mb(H) bicliques of G[H] include
all edges of G[H]. �

Example 2.3. Let G = P3 and H = K3. Then b(P3) = 1 and K3 has two
bicliques K1,2 and K2. As it is shown in Figure 1, the following seven bicliques
partition the edges of P3[K3].

{(2, a), (2, b), (2, c)} ∪ {(1, a), (1, b), (1, c), (3, a), (3, b), (3, c)},
{(1, b)} ∪ {(1, a), (1, c)}, {(1, a)} ∪ {(1, c)},
{(2, b)} ∪ {(2, a), (2, c)}, {(2, a)} ∪ {(2, c)},
{(3, b)} ∪ {(3, a), (3, c)}, {(3, a)} ∪ {(3, c)}.
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(1, a) (2, a) (3, a)

(1, b) (2, b) (3, b)

(1, c) (2, c) (3, c)

Figure 1. A biclique decomposition of P3[K3]

The following theorems provide a detailed exposition of eigenshapness of
some graph compositions.

Theorem 2.4. Km[Kn] is eigensharp for all m,n ∈ N.

Proof. From Lemma 2.1 we have

σA(Km[Kn]) = {mn− 1, (−1)[mn−1]}.

So, h(Km[Kn]) = mn − 1. On the other hand, by definition of lexicographic
product, mKn + Kn,(m−1)n + Kn,(m−2)n + · · · + Kn,n is a decomposition of
Km[Kn]. Also, b(Kn) = n − 1 by Graham-Pollak [4]. Therefore, mn − 1
complete bipartite subgraphs partition the edges of Km[Kn] and b(Km[Kn]) =
h(Km[Kn]). �

Remark 2.5. Note that according to Graham-Pollak [4], Theorem 2.4 may be
summarized by saying that Km[Kn] ' Kmn.

Theorem 2.6. Kn,m[Kt] is eigensharp for all m,n ∈ N.

Proof. It is shown in [2] that σA(Kn,m)={
√
nm, 0[n+m−2],−

√
nm} and σA(Kt)

= {t− 1, (−1)[t−1]}. So, by Lemma 2.1,

σA(Kn,m[Kt]) = {(t
√
nm+ t− 1), (t− 1)[n+m−2], (−t

√
nm+ t− 1)}

∪ {(−1)[(n+m)(t−1)]}.

Hence, we have h(Kn,m[Kt]) = q(Kn,m[Kt]) = (n+m)(t−1)+1. On the other
hand, the edge set of Kn,m[Kt] can be decomposed by n+m complete subgraphs
Kt and one subgraph Ktn,tm. Therefore, (n+m)(t− 1) + 1 bicliques partition
the edges of Kn,m[Kt]. Thus, b(Kn,m[Kt]) = h(Kn,m[Kt]) = (n+m)(t− 1) + 1
and Kn,m[Kt] is eigensharp. �

Remark 2.7. We know that σA(Cn) = {2 cos( 2πj
n ) : 0 ≤ j < n} by Brouwer [2].

Kratzke et al. in [9] proved that cycles Cn with n = 4 or n 6= 4k are eigensharp.
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In [3], Ghorbani and Maimani rephrased the theorem by determining p(Cn) and
q(Cn). We summarize the results in Table 1.

Table 1. Eigensharpness of the cycle Cn.

n p(Cn) q(Cn) h(Cn) b(Cn) Type
4 1 1 1 1 Eigensharp
4k n−2

2
n−2
2

n−2
2

n
2 Almost eigensharp

4k + 1 n+1
2

n−1
2

n+1
2

n+1
2 Eigensharp

4k + 2 n
2

n
2

n
2

n
2 Eigensharp

4k + 3 n−1
2

n+1
2

n+1
2

n+1
2 Eigensharp

The next theorem is an analogue of the result stated in the remak.

Theorem 2.8. Km[Cn] is eigensharp for n = 4 and n ≡ 2, 3 (mod 4).

Proof. Let G = Km[Cn]. If n = 4, then by Lemma 2.1, the spectrum of
Km[C4] is {4m − 2,−2[2m−1], 0[2m]}. Hence, h(Km[C4]) = 2m − 1. Also, it
follows from Lemma 2.2 and Table 1 that b(Km[C4]) ≤ 2m − 1. Therefore,
h(Km[C4]) = b(Km[C4]) and Km[C4] is an eigensharp graph.

For n 6= 4, again by Lemma 2.2 and Table 1, b(G) ≤ m − 1 + mdn2 e. In

other words, b(G) ≤ mn+2m−2
2 for n = 4k, 4k + 2 and b(G) ≤ mn+3m−2

2 for
n = 4k + 1, 4k + 3. What is left is to evaluate the number of positive and
negative eigenvalues of G. Set n = 4k + 2, Lemma 2.1 shows that

σA(G) = {mn− n+ 2, (−n+ 2)[m−1]}
⋃
{(σA(Cn) \ {2})[m]}.

In view of Table 1, p(Cn) = q(Cn) = n
2 . Thus, it is evident that q(G) =

mq(Cn) + m − 1 = mn+(2m−2)
2 and p(G) = m(p(Cn) − 1) + 1 = mn−(2m−2)

2 .
Thus, q(G) = h(G) = b(G) and G is eigensharp. Similar arguments apply to
the other cases of n. We arranged the amount of p(G) and q(G) in Table 2.

Table 2. The number of p(G) and q(G) for G = Km[Cn].

n p(G) q(G) b(G)
4 1 2m− 1 ≤ 2m− 1
4k mn−4m+2

2
mn−2

2 ≤ mn+2m−2
2

4k + 1 mn−(m−2)
2

mn+(m−2)
2 ≤ mn+3m−2

2

4k + 2 mn−(2m−2)
2

mn+(2m−2)
2 ≤ mn+2m−2

2

4k + 3 mn−(3m−2)
2

mn+(3m−2)
2 ≤ mn+3m−2

2

Now it is easy to check the eigensharpness of G from Table 2. For instance,
if n = 4k + 3, then

mn+ (3m− 2)

2
= h(G) ≤ b(G) ≤ mn+ (3m− 2)

2
.
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So, h(G) = b(G) and G is eigensharp. �

Corollary 2.9. The Cocktail Party graph CP2m is eigensharp.

Proof. First note that by definition of lexicographic product, Km[K4] is the
complete graphK4m. Let V (Km) = {1, 2, . . . ,m} and a−b−c−d−a be a 4-cycle
of K4. Consider two edge sets E1 = {(i, a)(i, c)}mi=1 and E2 = {(i, b)(i, d)}mi=1

of E(Km[K4]). It is clear that E1 ∪ E2 is a perfect matching of Km[K4]. Fur-
thermore, removing 2m edges of E1 and E2 from Km[K4] induces the subgraph
Km[C4]. Hence, Km[C4] is the Cocktail Party graph CP2m which is eigensharp
by Theorem 2.8. �

Theorem 2.10. Kn,m[Ct] is eigensharp for t = 4 and t ≡ 2, 3 (mod 4).

Proof. Let G = Kn,m[Ct]. According to Lemma 2.2 and Table 1, σA(G) =

{t
√
mn+2,−t

√
mn+2, 2[n+m−2]}

⋃
{(σA(Ct)\{2})[n+m]} and b(G) ≤ 1+(n+

m)d t2e. Hence, we obtain Table 3.

Table 3. p(G) and q(G) for G = Kn,m[Ct].

t p(G) q(G) b(G) ≤
4 n+m− 1 n+m+ 1 n+m+ 1

4k (t−2)(n+m)−2
2

(t−2)(n+m)+2
2

t(n+m)+2
2

4k + 1 (t+1)(n+m)−2
2

(t−1)(n+m)+2
2

(t+1)(n+m)+2
2

4k + 2 t(n+m)−2
2

t(n+m)+2
2

t(n+m)+2
2

4k + 3 (t−1)(n+m)−2
2

(t+1)(n+m)+2
2

(t+1)(n+m)+2
2

For example, if t = 4k+2, then by Table 1, p(G) = n+m−1+(n+m)( t2−1) =
t(n+m)−2

2 and q(G) = 1 + (n+m)( t2 ) = t(n+m)+2
2 . Hence, t(n+m)+2

2 = h(G) ≤
b(G) ≤ t(n+m)+2

2 and G is eigensharp. The same argument applies to cases
t = 4 and t = 4k + 3. �

Lemma 2.11. Let G and H be two graphs on m and n vertices, respectively.
Assume that H is r-regular. If G is integral or has no eigenvalues in [−rn , 0),
then

s(G[H]) = ms(H), q(G[H]) = mq(H) + q(G) and p(G[H]) = mp(H)− q(G).

Proof. Lemma 2.1 shows that the number of eigenvalues of H distributes be-
tween s(G[H]), p(G[H]) and q(G[H]). Similarly, zero and positive eigenvalues
of G enumerate the positive eigenvalues of G[H] while negative eigenvalues of
G do not so. Therefore, we have the following bounds for s(G[H]), p(G[H])
and q(G[H]):

s(G[H]) ≥ ms(H), q(G[H]) ≤ mq(H) + q(G),
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and

p(G[H]) ≥ p(G) + s(G) +m(p(H)− 1) = m− q(G) +mp(H)−m
= mp(H)− q(G).

Now, since G has no eigenvalues in [−rn , 0), if λ is a negative eigenvalue of
G, then nλ + r is a negative eigenvalue of G[H]. Therefore, each negative
eigenvalue of G creates a negative eigenvalue for G[H], which completes the
proof. �

Theorem 2.12. Let G and H be two graphs of order m and n, respectively.
Let H be r-regular and G have no eigenvalue in [−rn , 0). Then G[H] is

(a) eigensharp if G and H are eigensharp with b(G) = q(G) and b(H) =
q(H),

(b) eigensharp or almost eigensarp if G is almost eigensharp with b(G) =
q(G) + 1 and H is eigensharp with b(H) = q(H).

Proof. As an immediate consequence of Lemma 2.1 and Lemma 2.11 we have
mq(H) + q(G) = h(G[H]) ≤ b(G[H]) ≤ mb(H) + b(G) = mq(H) + q(G). So
b(G[H]) = h(G[H]) and the graph is eigensharp. Similarly, for the other case
h(G[H]) ≤ b(G[H]) ≤ h(G[H]) + 1 and the graph is eigensharp or almost
eigensarp. �

Corollary 2.13. Km[Qn] is eigensharp if and only if n is odd or n = 2.

Proof. It is shown in [3] that the n-cube Qn is an eigensharp graph with
b(Qn) = q(Qn) = 2n−1 if and only if n is odd or n = 2. Thus, the result
follows by Theorem 2.12. �

Definition. We say that G is t-eigensharp or almost t-eigensharp if b(G) =
q(G) + t or b(G) = q(G) + 1 + t, respectively.

Theorem 2.14. There exists an even integer 0 ≤ t ≤ dm2 e such that Cm[Cn]
is

(a) at most t-eigensharp for n,m ∈ {4k + 2, 4k + 3; k = 0, 1, 2, . . .} ∪ {4},
(b) at most almost t-eigensharp for m ∈ {4k + 1; k = 0, 1, 2, . . .} and n ∈
{4k + 2, 4k + 3; k = 0, 1, 2, . . .} ∪ {4},

(c) at most t+m-eigensharp for m ∈ {4k+ 2, 4k+ 3; k = 0, 1, 2, . . .} ∪ {4}
and n ∈ {4k; k = 0, 1, 2, . . .},

(d) at most almost t + m-eigensharp for m ∈ {4k + 1; k = 0, 1, 2, . . .} and
n ∈ {4k; k = 0, 1, 2, . . .}.

Proof. Let t be the number of roots of χCm
(x) =

∏m−1
j=0 (x − 2 cos 2πj

m ), the

characteristic polynomial of Cm, in [−2n , 0). As it is shown in [3], one has

χCm
(0) =

{ −2 m is odd,
0 m = 4k,
−4 m = 4k + 2.
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Table 4. The number of positive and negative eigenvalues of Cm[Cn].

Cm[Cn] m = 4 m = 4k m = 4k + 1 m = 4k + 2 m = 4k + 3

n = 4
p = 3 p = m+2

2 + s p = m+1
2 + t p = m

2 + t p = m−2
2 + t

q = 5 q = 3m−2
2 − s q = 3m−1

2 − t q = 3m
2 − t q = 3m+1

2 − t

n = 4k
p = 2n− 5 p = mn−3m+2

2 + s p = mn−3m+1
2 + t p = mn−3m

2 + t p = mn−3m−1
2 + t

q = 2n− 3 q = mn−m−2
2 − s q = mn−m−1

2 − t q = mn−m
2 − t q = mn−m+1

2 − t

n = 4k + 1
p = 2n+ 1 p = mn+2

2 + s p = mn+1
2 + t p = mn

2 + t p = mn−1
2 + t

q = 2n− 1 q = mn−2
2 − s q = mn−1

2 − t q = mn
2 − t q = mn+1

2 − t

n = 4k + 2
p = 2n− 1 p = mn−m+2

2 + s p = mn−m+1
2 + t p = mn−m

2 + t p = mn−m−1
2 + t

q = 2n+ 1 q = mn+m−2
2 − s q = mn+m−1

2 − t q = mn+m
2 − t q = mn+m+1

2 − t

n = 4k + 3
p = 2n− 3 p = mn−2m+2

2 + s p = mn−2m+1
2 + t p = mn−2m

2 + t p = mn−2m−1
2 + t

q = 2n+ 3 q = mn+2m−2
2 − s q = mn+2m−1

2 − t q = mn+2m
2 − t q = mn+2m+1

2 − t

Let m 6= 4k be an even integer. Then,

χCm
(
−2

n
) = (−2)m(

1

n
+ 1)(

1

n
− 1)

m−2
2∏
j=1

(
1

n
+ cos

2πj

m
)2 < 0.

Similarly, for an odd integer m, χCm(−2n ) < 0. Therefore, Cm has even negative

eigenvalues in (−rn , 0) which create t positive eigenvalues of Cm[Cn]. Thus,
p(Cm[Cn]) = mp(Cn) − q(Cm) + t and q(Cm[Cn]) = mq(Cn) + q(Cm) − t by
Lemma 2.11 and Table 1. Consequently, part (a) follows by Lemma 2.2 and
Table 1. That is,

q(Cm[Cn]) = mq(Cn) + q(Cm)− t ≤ b(Cm[Cn])

≤ mq(Cn) + q(Cm) = q(Cm[Cn]) + t.

For part (b), it follows from Table 1 that

q(Cm[Cn]) ≤ b(Cm[Cn])

≤ mq(Cn) + p(Cm) = mq(Cn) + q(Cm) + 1 = q(Cm[Cn]) + 1 + t.

Thus, Cm[Cn] is at most almost t-eigensharp. An analogical argument may
apply to the other cases.

For m = 4k, Cm[Cn] is at most almost s+m-eigensharp for n ≡ 0, 1 (mod 4)
and almost s-eigensharp otherwise, for some 0 ≤ s ≤ dm2 e − 2. �

Corollary 2.15. C4[Cn] is eigensharp for n = 4 or n ≡ 2, 3 (mod 4) and at
most 4-eigensharp for n = 4k, k 6= 1.
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Theorem 2.16. Let m 6= 4k. Then there exists an even integer 0 ≤ t ≤ dm2 e
such that Cm[Kn] is at most t-eigensharp for m = 4 or m ≡ 2, 3 (mod 4) and
at most almost t-eigensharp for m ≡ 1 (mod 4). In particular, it is eigensharp
for m = 4.

Proof. By a similar argument as in the proof of Theorem 2.14, Cm has no
eigenvalues in [ 1−nn , 0). We arranged the values of p(Cm[Kn]) and q(Cm[Kn])
in Table 5. According to Table 1, for m = 4 or m ≡ 2, 3 (mod 4), Cm is
eigensharp with b(Cm) = q(Cm). Thus, we have

q(Cm[Kn]) ≤ b(Cm[Kn]) ≤ mq(Kn) + q(Cm) = q(Cm[Kn]) + t.

If m = 4k + 1, then

q(Cm[Kn]) =
2mn−m− 1

2
− t ≤ b(Cm[Kn])

≤ m+ 1

2
+m(n− 1) = q(Cm[Kn]) + 1 + t.

So, Cm[Kn] is at most almost t-eigensharp. For m = 4k, Cm[Kn] is at most
almost s-eigensharp where s is the number of eigenvalues of Cm in [ 1−nn , 0).

Table 5. p(G) and q(G) for G = Cm[Kn].

m p(Cm[Kn]) q(Cm[Kn]) Type
4 3 4n− 3 Eigensharp
4k m+2

2 + s 2mn−m−2
2 − s At most almost s-eigensharp

4k + 1 m+1
2 + t 2mn−m−1

2 − t At most almost t-eigensharp
4k + 2 m

2 + t 2mn−m
2 − t At most t-eigensharp

4k + 3 m−1
2 + t 2mn−m+1

2 − t At most t-eigensharp

�

3. Eigensharpness of powers of lexicographic products of some
graphs

Recently, Abreu et al. [1, Corollary 3.4] determined the spectrum of Gk, the
kth power of a regular graph G with respect to the lexicographic product. That
is, G0 = K1, G1 = G and Gk = Gk−1[G] for k ≥ 2.

Lemma 3.1. Let G be a connected q-regular graph of order m with

σA(G) = {q, γ2(G)
[g2], . . . , γs(G)

[gs]}.

Then, for each integer k ≥ 1, Gk is rk-regular of order vk, with

vk = mk, rk = q
mk − 1

m− 1
,
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and

σA(Gk) =
( k−1⋃
i=0

{(miγ2(G)+ri)
[g2m

k−1−i], . . . , (miγs(G)+ri)
[gsm

k−1−i]}
)
∪{rk}.

Lemma 3.2. Let G be a connected q-regular graph of order m. If G has no

eigenvalue in the interval [−rimi , 0] for 0 ≤ i ≤ k − 1, where ri = qm
i−1

m−1 , then

p(Gk) = mk − q(Gk), q(Gk) = q(G)
mk − 1

m− 1
.

Proof. Let {γ1(G)
[g1], . . . , γt(G)

[gt]} be the negative eigenvalues of G. Since G
has no eigenvalues in [−rimi , 0] for 0 ≤ i ≤ k − 1,

k−1⋃
i=0

{(miγ1(G) + ri)
[g1m

k−1−i], . . . , (miγt(G) + ri)
[gtm

k−1−i]},

is the set of negative eigenvalues of Gk by Lemma 3.1. Therefore,

q(Gk) = g1(1 + · · ·+mk−2 +mk−1) + · · ·+ gt(1 + · · ·+mk−2 +mk−1)

= (g1 + · · ·+ gt)(1 + · · ·+mk−2 +mk−1)

= q(G)
mk − 1

m− 1
,

and similarly,

p(Gk) = (p(G)− 1)
mk − 1

m− 1
+ s(G)

mk − 1

m− 1
+ 1

=
(m− 1− q(G))(mk − 1) +m− 1

m− 1

= mk − q(G)
mk − 1

m− 1

= mk − q(Gk). �

Theorem 3.3. Let G be a connected q-regular graph of order m. Assume that

G has no eigenvalues in [−rimi , 0] for 0 ≤ i ≤ k − 1, where ri = qm
i−1

m−1 . If G is

an eigensharp graph with b(G) = q(G), then so is Gk.

Proof. By Lemma 2.2 and induction on k, one has b(Gk) ≤ mk−1
m−1 b(G). On the

other hand,

mk − 1

m− 1
q(G) = q(Gk) ≤ h(Gk) ≤ b(Gk) ≤ mk − 1

m− 1
q(G)

by Lemma 3.2. Hence, Gk is an eigensharp graph. �

Corollary 3.4. Kk
n and Ck4 are eigensharp.
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