• Title/Summary/Keyword: Material non-linear

Search Result 592, Processing Time 0.023 seconds

Characteristics of Static Buckling Load of the Hexagonal Spatial Truss Models using Timber (목재를 이용한 육각형 공간 트러스 모델의 정적좌굴하중 특성)

  • Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • In this paper, the instability of the domed spatial truss structure using wood and the characteristics of the buckling critical load were studied. Hexagonal space truss was adopted as the model to be analyzed, and two boundary conditions were considered. In the first case, the deformation of the inclined member is only considered, and in the second case, the deformation of the horizontal member is also considered. The materials of the model adopted in this paper are steel and timbers, and the considered timbers are spruce, pine, and larch. Here, the inelastic properties of the material are not considered. The instability of the target structure was observed through non-linear incremental analysis, and the buckling critical load was calculated through the singularities and eigenvalues of the tangential stiffness matrix at each incremental step. From the analysis results, in the example of the boundary condition considering only the inclined member, the critical buckling load was lower when using timber than when using steel, and the critical buckling load was determined according to the modulus of elasticity of timber. In the case of boundary conditions considering the effect of the horizontal member, using a mixture of steel and timber case had a lower buckling critical load than the steel case. But, the result showed that it was more effective in structural stability than only timber was used.

The development of the seismic fragility curves of existing bridges in Indonesia (Case study: DKI Jakarta)

  • Veby Citra Simanjuntak;Iswandi Imran;Muslinang Moestopo;Herlien D. Setio
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.1
    • /
    • pp.87-105
    • /
    • 2023
  • Seismic regulations have been updated from time to time to accommodate an increase in seismic hazards. Comparison of seismic fragility of the existing bridges in Indonesia from different historical periods since the era before 1990 will be the basis for seismic assessment of the bridge stock in Indonesia, most of which are located in earthquake-prone areas, especially those built many years ago with outdated regulations. In this study, seismic fragility curves were developed using incremental non-linear time history analysis and more holistically according to the actual strength of concrete and steel material in Indonesia to determine the uncertainty factor of structural capacity, βc. From the research that has been carried out, based on the current seismic load in SNI 2833:2016/Seismic Map 2017 (7% probability of exceedance in 75 years), the performance level of the bridge in the era before SNI 2833:2016 was Operational-Life Safety whereas the performance level of the bridge designed with SNI 2833:2016 was Elastic - Operational. The potential for more severe damage occurs in greater earthquake intensity. Collapse condition occurs at As = FPGA x PGA value of bridge Era I = 0.93 g; Era II = 1.03 g; Era III = 1.22 g; Era IV = 1.54 g. Furthermore, the fragility analysis was also developed with geometric variations in the same bridge class to see the effect of these variations on the fragility, which is the basis for making bridge risk maps in Indonesia.

Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai;Mouloud Dahmane
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.83-96
    • /
    • 2024
  • This paper suggests an analytical approach to investigate the free vibration and stability of functionally graded (FG) beams with both perfect and imperfect characteristics using a quasi-3D higher-order shear deformation theory (HSDT) with stretching effect. The study specifically focuses on FG beams resting on variable elastic foundations. In contrast to other shear deformation theories, this particular theory employs only four unknown functions instead of five. Moreover, this theory satisfies the boundary conditions of zero tension on the beam surfaces and facilitates hyperbolic distributions of transverse shear stresses without the necessity of shear correction factors. The elastic medium in consideration assumes the presence of two parameters, specifically Winkler-Pasternak foundations. The Winkler parameter exhibits variable variations in the longitudinal direction, including linear, parabolic, sinusoidal, cosine, exponential, and uniform, while the Pasternak parameter remains constant. The effective material characteristics of the functionally graded (FG) beam are assumed to follow a straightforward power-law distribution along the thickness direction. Additionally, the investigation of porosity includes the consideration of four different types of porosity distribution patterns, allowing for a comprehensive examination of its influence on the behavior of the beam. Using the virtual work principle, equations of motion are derived and solved analytically using Navier's method for simply supported FG beams. The accuracy is verified through comparisons with literature results. Parametric studies explore the impact of different parameters on free vibration and buckling behavior, demonstrating the theory's correctness and simplicity.

A study of Improvement on the Road Drainage Poor Site (도로배수 취약구간의 개선방안에 대한 연구)

  • Lee, Man-Seok;Kim, Heung-Rae;Lee, Kyung-Ha;Kang, Min-Soo;Song, Min-Tae
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • This research aims to investigate the cause of the occurrence of a weak road drainage section scientifically and specifically through a site survey for a poorly drained section occurring due to rainfalls during road operation. This paper deeply reviewed the existing research results and current situation data on the poorly drained sections accumulated in Korea Expressway Corporation in order to investigate the cause of the occurrence of a weak road drainage section, and deeply verified and analyzed the weak sections for the road surface drainage facilities and the other road drainage facilities by visiting the expressway controlled by the 6 local headquarters and 33 branches of Korea Expressway Corporation. As a result of site surveys for the weak road drainage sections, i) in a road surface section, occurrence of ponding in the road shoulder pavement due to slope changes, bad collection of water in the collecting well at a median strip, shortage of road shoulder dike height, and inferior construction, etc. was analyzed to be the main cause of the occurrence of poorly drained sections, and ii) in a road neighborhood section, the occurrence of pavement height difference in a main road and shoulder section due to inferior ditches on a slope and the bad drain age at the inlet and outlet of a culvert due to soil deposits, debris, etc. were analyzed to be the main cause of the occurrence of weak sections. Proposed as a plan to improve the poorly drainage section of road were i)calculation of capacity through material changes at the ditch, enhancement of vertical sections and hydraulic analysis in terms of construction and other aspects, ii)derivation of a combined slope considering a slope and a vertical linearity and maintenance of proper distance between drainage structures in a vertical concave section in terms of geometrical structure, and iii)calculation of the drainage facility installation interval using a minutely rainfall intensity formula and a non-uniform flow analysis technique in terms of hydraulics and hydrologics and prompt removal of rainfalls from the road surface according to a linear drainage method.

Large Deformational Elasto-Plastic Analysis of Space Frames Considering Finite Rotations and Joint Connection Properties (유한회전과 접합부 특성을 고려한 공간프레임의 대변형 탄소성 해석)

  • Lee, Kyung Soo;Han, Sang Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.597-608
    • /
    • 2009
  • In this paper, large-deformation elasto-plastic analysis of space frames that considersjoint connection properties is presented. This method is based on the large-deformation formula with finite rotation, which was developed initially for elastic systems, and is extended herein to include the elasto-plastic effect and the member joint connection properties of semi-rigid what?. The analytical method was derived from the Eulerian concept, which takes into consideration the effects of large joint translations and rotations. The localmember force-deformation relationships were obtained from the beam-column approach, and the change caused by the axial strain in the member chord lengths and flexural bowing were taken into account. The effect of the axial force of the member on bending and torsional stiffness, and on the plastic moment capacity, is included in the analysis. The material is assumed to be ideally elasto-plastic, and yielding is considered concentrated at the member ends in the form of plastic hinges. The semi-rigid properties of the member joint connection are considered based on the power or linear model. The arc length method is usedto trace the post-buckling range of the elastic and elasto-plastic problems with the semi-rigid connection. A sample non-linear buckling analysis was carried out with the proposed space frame formulations to demonstrate the potential of the developed method in terms of its accuracy and efficiency.

Development of FURA Code and Application for Load Follow Operation (FURA 코드 개발과 부하 추종 운전에 대한 적용)

  • Park, Young-Seob;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.88-104
    • /
    • 1988
  • The FUel Rod Analysis(FURA) code is developed using two-dimensional finite element methods for axisymmetric and plane stress analysis of fuel rod. It predicts the thermal and mechanical behavior of fuel rod during normal and load follow operations. To evaluate the exact temperature distribution and the inner gas pressure, the radial deformation of pellet and clad, the fission gas release are considered over the full-length of fuel rod. The thermal element equation is derived using Galerkin's techniques. The displacement element equation is derived using the principle of virtual works. The mechanical analysis can accommodate various components of strain: elastic, plastic, creep and thermal strain as well as strain due to swelling, relocation and densification. The 4-node quadratic isoparametric elements are adopted, and the geometric model is confined to a half-pellet-height region with the assumption that pellet-pellet interaction is symmetrical. The pellet cracking and crack healing, pellet-cladding interaction are modelled. The Newton-Raphson iteration with an implicit algorithm is applied to perform the analysis of non-linear material behavior accurately and stably. The pellet and cladding model has been compared with both analytical solutions and experimental results. The observed and predicted results are in good agreement. The general behavior of fuel rod is calculated by axisymmetric system and the cladding behavior against radial crack is used by plane stress system. The sensitivity of strain aging of PWR fuel cladding tube due to load following is evaluated in terms of linear power, load cycle frequency and amplitude.

  • PDF

Life-time Prediction of a FKM O-ring using Intermittent Compression Stress Relaxation (CSR) and Time-temperature Superposition (TTS) Principle (간헐 압축응력 완화와 시간-온도 중첩 원리를 이용한 FKM 오링의 수명 예측 연구)

  • Lee, Jin-Hyok;Bae, Jong-Woo;Kim, Jung-Su;Hwang, Tae-Jun;Park, Sung-Doo;Park, Sung-Han;Min, Yeo-Tae;Kim, Won-Ho;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.263-271
    • /
    • 2010
  • Intermittent CSR testing was used to investigate the degradation of an FKM O-ring, also the prediction of its life-time. An intermittent CSR jig was designed taking into consideration the O-ring's environment under use. The testing allowed observation of the effects of friction, heat loss, and stress relaxation by the Mullins effect. Degradation of O-rings by thermal aging was observed between 60 and $160^{\circ}C$. In the high temperature of range ($100-160^{\circ}C$) O-rings showed linear degradation behavior and satisfied the Arrhenius relationship. The activation energy was about 60.2 kJ/mol. From Arrhenius plots, predicted life-times were 43.3 years and 69.9 years for 50% and 40% failure conditions, respectively. Based on TTS (time-temperature superposition) principle, degradation was observed at $60^{\circ}C$, and could save testing time. Between 60 and $100^{\circ}C$ the activation energy decreased to 48.3 kJ/mol. WLF(William-Landel-Ferry) plot confirmed that O-rings show non-linear degradation behavior under $80^{\circ}C$. The life-time of O-rings predicted by TTS principle was 19.1 years and 25.2 years for each failure condition. The life-time predicted by TTS principle is more conservative than that from the Arrhenius relationship.

Sintering and Electrical Properties of Cr-doped ZnO-Bi2O3-Sb2O3 (Cr을 첨가한 ZnO-Bi2O3-Sb2O3계의 소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.942-948
    • /
    • 2010
  • In this study we aims to examine the effects of 0.5 mol% $Cr_2O_3$ addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of ZnO-$Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by XRD, density, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Cr-doped ZBS (ZBSCr) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered on heating in ZBS (Sb/Bi=1.0) by Cr doping. The densification of ZBSCr (Sb/Bi=0.5) system was retarded to $800^{\circ}C$ by unknown Bi-rich phase produced at $700^{\circ}C$. Pyrochlore on cooling was reproduced in all systems. And $Zn_7Sb_2O_{12}$ spinel ($\alpha$-polymorph) and $\delta-Bi_2O_3$ phase were formed by Cr doping. In ZBSCr, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha$ = 7~12) and independent on microstructure according to Sb/Bi ratio. Doping of $Cr_2O_3$ to ZBS seemed to form $Zn_i^{..}$(0.16 eV) and $V^{\bullet}_o$ (0.33 eV) as dominant defects. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one (1.1 eV) and electrically inactive intergranular one (0.95 eV) with temperature.

Behaviour of steel-fibre-reinforced concrete beams under high-rate loading

  • Behinaein, Pegah;Cotsovos, Demetrios M.;Abbas, Ali A.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • The present study focuses on examining the structural behaviour of steel-fibre-reinforced concrete (SFRC) beams under high rates of loading largely associated with impact problems. Fibres are added to the concrete mix to enhance ductility and energy absorption, which is important for impact-resistant design. A simple, yet practical non-linear finite-element analysis (NLFEA) model was used in the present study. Experimental static and impact tests were also carried out on beams spanning 1.3 meter with weights dropped from heights of 1.5 m and 2.5 m, respectively. The numerical model realistically describes the fully-brittle tensile behaviour of plain concrete as well as the contribution of steel fibres to the post-cracking response (the latter was allowed for by conveniently adjusting the constitutive relations for plain concrete, mainly in uniaxial tension). Suitable material relations (describing compression, tension and shear) were selected for SFRC and incorporated into ABAQUS software Brittle Cracking concrete model. A more complex model (i.e., the Damaged Plasticity concrete model in ABAQUS) was also considered and it was found that the seemingly simple (but fundamental) Brittle Cracking model yielded reliable results. Published data obtained from drop-weight experimental tests on RC and SFRC beams indicates that there is an increase in the maximum load recorded (compared to the corresponding static one) and a reduction in the portion of the beam span reacting to the impact load. However, there is considerable scatter and the specimens were often tested to complete destruction and thus yielding post-failure characteristics of little design value and making it difficult to pinpoint the actual load-carrying capacity and identify the associated true ultimate limit state (ULS). To address this, dynamic NLFEA was employed and the impact load applied was reduced gradually and applied in pulses to pinpoint the actual failure point. Different case studies were considered covering impact loading responses at both the material and structural levels as well as comparisons between RC and SFRC specimens. Steel fibres were found to increase the load-carrying capacity and deformability by offering better control over the cracking process concrete undergoes and allowing the impact energy to be absorbed more effectively compared to conventional RC members. This is useful for impact-resistant design of SFRC beams.

Defects and Electrical Properties of NiO and Co3O4-doped ZnO-Bi2O3-Sb2O3 Ceramics (NiO와 Co3O4를 첨가한 ZnO-Bi2O3-b2O3 세라믹스의 결함과 전기적 특성)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • In this study we aims to examine the effects of $Co_3O_4$ and NiO doping on the defects and electrical properties in ZnO-$Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5) varistors. It seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.20 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects in Co and Ni co-doped ZBS system, however only ${V_o}^{\cdot}$ appeared in Co- or Ni-doped ZBS. Even though the same defects it was different in capacitance (1.5~4.5 nF) and resistance ($0.3{\sim}9.5k{\Omega}$). The varistor characteristics were improved with Co and Co+Ni doping (non-linear coefficient, ${\alpha}$= 36 and 29, relatively) in ZBS. The various parameters ($N_d=1.43{\sim}2.33{\times}10^{17}cm^{-3}$, $N_t=1.40{\sim}2.28{\times}10^{12}cm^{-2}$, ${\Phi}b$=1.76~2.37 V, W= 98~118 nm) calculated from the C-V characteristics in our systems did not depend greatly on the type of dopant, which were in the range of a typical ZnO varistors. It should be derived a improved C-V equation carefully for more reliable parameters because the variation of the varistor capacitance as a function of the applied dc voltage is depend on the defect, frequency, and temperature.