DOI QR코드

DOI QR Code

Defects and Electrical Properties of NiO and Co3O4-doped ZnO-Bi2O3-Sb2O3 Ceramics

NiO와 Co3O4를 첨가한 ZnO-Bi2O3-b2O3 세라믹스의 결함과 전기적 특성

  • Hong, Youn-Woo (Functional Module Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Young-Jin (Functional Module Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Sei-Ki (Functional Module Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
  • 홍연우 (한국세라믹기술원 기능성모듈팀) ;
  • 이영진 (한국세라믹기술원 기능성모듈팀) ;
  • 김세기 (한국세라믹기술원 기능성모듈팀) ;
  • 김진호 (경북대학교 신소재공학부)
  • Received : 2012.12.12
  • Accepted : 2012.12.17
  • Published : 2013.01.01

Abstract

In this study we aims to examine the effects of $Co_3O_4$ and NiO doping on the defects and electrical properties in ZnO-$Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5) varistors. It seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.20 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects in Co and Ni co-doped ZBS system, however only ${V_o}^{\cdot}$ appeared in Co- or Ni-doped ZBS. Even though the same defects it was different in capacitance (1.5~4.5 nF) and resistance ($0.3{\sim}9.5k{\Omega}$). The varistor characteristics were improved with Co and Co+Ni doping (non-linear coefficient, ${\alpha}$= 36 and 29, relatively) in ZBS. The various parameters ($N_d=1.43{\sim}2.33{\times}10^{17}cm^{-3}$, $N_t=1.40{\sim}2.28{\times}10^{12}cm^{-2}$, ${\Phi}b$=1.76~2.37 V, W= 98~118 nm) calculated from the C-V characteristics in our systems did not depend greatly on the type of dopant, which were in the range of a typical ZnO varistors. It should be derived a improved C-V equation carefully for more reliable parameters because the variation of the varistor capacitance as a function of the applied dc voltage is depend on the defect, frequency, and temperature.

Keywords

References

  1. D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999).
  2. T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  3. K. Eda, IEEE Elec. Insulation. Mag., 5, 28 (1989).
  4. R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987). https://doi.org/10.1146/annurev.ms.17.080187.001503
  5. M. Inada and M. Matsuoka, Advances in Ceramics (American Ceramic Society, Columbus, 1984) p. 91.
  6. J. Kim, T. K. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc., 72, 1390 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb07659.x
  7. Y. W. Hong and J. H. Kim, J. Kor. Ceram. Soc., 37, 651 (2000).
  8. Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 21, 738 (2008).
  9. Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 24, 969 (2011).
  10. Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 941 (2009).
  11. H. R. Philipp, Materials Science Research, Tailoring Multiphase and Composite Ceramics (eds. R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham) (Prenum Press, New York/London, 1987) p. 481.
  12. G. D. Mahan, L. M. Levinson, and H. R. Philipp, J. Appl. Phys., 50, 2799 (1979). https://doi.org/10.1063/1.326191
  13. K. Mukae, K. Tsuda, and I. Nagasawa, J. Appl. Phys., 50, 4475 (1979). https://doi.org/10.1063/1.326411
  14. L. F. Luo, Appl. Phys. Lett., 36, 570 (1980). https://doi.org/10.1063/1.91549
  15. M. Andres-Verges and A. R. West, J. Electroceram., 1, 125 (1997). https://doi.org/10.1023/A:1009906315725
  16. F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). https://doi.org/10.1088/0268-1242/5/2/001
  17. A. Rohatgi, S. K. Pang, T. K. Gupta, and W. D. Straub, J. Appl. Phys., 63, 5375 (1988). https://doi.org/10.1063/1.340355
  18. P. R. Bueno, J. A. Varela, and E. Longo, J. Euro. Ceram. Soc., 28, 505 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.06.011
  19. B. S. Chiou and M. C. Chung, J. Electron. Mater., 20, 885 (1991). https://doi.org/10.1007/BF02665979
  20. E. Olsson and G. L. Dunlop, J. Appl. Phys., 66, 3666 (1989). https://doi.org/10.1063/1.344453