Browse > Article
http://dx.doi.org/10.4313/JKEM.2013.26.1.38

Defects and Electrical Properties of NiO and Co3O4-doped ZnO-Bi2O3-Sb2O3 Ceramics  

Hong, Youn-Woo (Functional Module Team, Korea Institute of Ceramic Engineering and Technology)
Lee, Young-Jin (Functional Module Team, Korea Institute of Ceramic Engineering and Technology)
Kim, Sei-Ki (Functional Module Team, Korea Institute of Ceramic Engineering and Technology)
Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.26, no.1, 2013 , pp. 38-43 More about this Journal
Abstract
In this study we aims to examine the effects of $Co_3O_4$ and NiO doping on the defects and electrical properties in ZnO-$Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5) varistors. It seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.20 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects in Co and Ni co-doped ZBS system, however only ${V_o}^{\cdot}$ appeared in Co- or Ni-doped ZBS. Even though the same defects it was different in capacitance (1.5~4.5 nF) and resistance ($0.3{\sim}9.5k{\Omega}$). The varistor characteristics were improved with Co and Co+Ni doping (non-linear coefficient, ${\alpha}$= 36 and 29, relatively) in ZBS. The various parameters ($N_d=1.43{\sim}2.33{\times}10^{17}cm^{-3}$, $N_t=1.40{\sim}2.28{\times}10^{12}cm^{-2}$, ${\Phi}b$=1.76~2.37 V, W= 98~118 nm) calculated from the C-V characteristics in our systems did not depend greatly on the type of dopant, which were in the range of a typical ZnO varistors. It should be derived a improved C-V equation carefully for more reliable parameters because the variation of the varistor capacitance as a function of the applied dc voltage is depend on the defect, frequency, and temperature.
Keywords
ZnO varistor; $Co_3O_4$; NiO; Defect; Electrical property;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999).
2 T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990).   DOI
3 K. Eda, IEEE Elec. Insulation. Mag., 5, 28 (1989).
4 R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987).   DOI   ScienceOn
5 M. Inada and M. Matsuoka, Advances in Ceramics (American Ceramic Society, Columbus, 1984) p. 91.
6 J. Kim, T. K. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc., 72, 1390 (1989).   DOI   ScienceOn
7 Y. W. Hong and J. H. Kim, J. Kor. Ceram. Soc., 37, 651 (2000).
8 Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 21, 738 (2008).
9 Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 24, 969 (2011).
10 Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 941 (2009).
11 H. R. Philipp, Materials Science Research, Tailoring Multiphase and Composite Ceramics (eds. R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham) (Prenum Press, New York/London, 1987) p. 481.
12 G. D. Mahan, L. M. Levinson, and H. R. Philipp, J. Appl. Phys., 50, 2799 (1979).   DOI   ScienceOn
13 K. Mukae, K. Tsuda, and I. Nagasawa, J. Appl. Phys., 50, 4475 (1979).   DOI
14 L. F. Luo, Appl. Phys. Lett., 36, 570 (1980).   DOI
15 M. Andres-Verges and A. R. West, J. Electroceram., 1, 125 (1997).   DOI   ScienceOn
16 F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990).   DOI   ScienceOn
17 A. Rohatgi, S. K. Pang, T. K. Gupta, and W. D. Straub, J. Appl. Phys., 63, 5375 (1988).   DOI
18 E. Olsson and G. L. Dunlop, J. Appl. Phys., 66, 3666 (1989).   DOI
19 P. R. Bueno, J. A. Varela, and E. Longo, J. Euro. Ceram. Soc., 28, 505 (2008).   DOI   ScienceOn
20 B. S. Chiou and M. C. Chung, J. Electron. Mater., 20, 885 (1991).   DOI