• Title/Summary/Keyword: Material handling equipment

Search Result 62, Processing Time 0.031 seconds

The Selection of Material Handling Equipment Using a Knowledge-Based Expert System (지식 베이스 전문가 시스템을 이용한 운반기구 선정에 관한 연구)

  • 강경식;나승훈;신동옥
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.26
    • /
    • pp.95-98
    • /
    • 1992
  • In a recent years, there has been little change in basic mechanical and electrical design of material handling equipment. Reliability, safety. strength and controls have been improved. The most important change is sophisticated control and operation brough about by the tremendous improvement in computer capabilities. Even though the material handling equipment has been improved, material handling equipment must be selected properly. In this paper, the paper selection of material handling equipment using expert system will be presented.

  • PDF

An intelligent consultant for material handling euqipment selection and evaluation

  • Park, Yang-Byung;Cha, Kyung-Cheon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.79-90
    • /
    • 1995
  • The material handling equipment selection, that is a key task in the material handling system design, is a complex, difficult task, and requires a massive technical knowledge and systematic analysis. It is invaluable to justify the selected equipment model by the performance evaluation before its actual implementation. This paper presents an intelligent knowledge-based expert system called "IMESE" created by authors, for the selection and evaluation of material handling equipment model suitable for movement and storage of materials in a manufacturing facility. The IMESE is consisted of four modules: a knowledge base to select an appropriate equipment type, a multiple criteria decision making procedure to choose the most favorable commercial model of the selected equipment type, a database to store the list of commercial models of equipment types with their specifications, and simulators to evaluate the performance of the equipment model. The whole process of IMESE is executed under VP-Expert expert system environment.vironment.

  • PDF

An intelligent consultant for mataerial handling equipment selection and evaluation (물자취급장비 선정과 평가를 위한 지능화된 자문시스템)

  • 박양병
    • Korean Management Science Review
    • /
    • v.12 no.1
    • /
    • pp.35-50
    • /
    • 1995
  • The material handling equipment selection, that is a key task in the material handling system design, is a complex, difficult task, and requires a massive technical knowledge and systematic analysis. It is also invaluable to justify the selected equipment model by the performance evaluation before its actual implementation. This paper presents an intelligent knowledge-based expert system called "IMESE" created by author, for the selection and evaluation of material handling equipment model suitable for movement and storage of materials in a manufacturing facility. The IMESE was constructed by using the tools of VP-Expert expert system shell, DBASEIII plus, FORTRAN 77, and SLAMII simulation language. The whole process of IMESE is executed under VP-Expert expert system environment.vironment.

  • PDF

A Real Time Integrated Dispatching Logic for Semiconductor Material Flow Control Considering Multi-load Automated Material Handling System (반도체 물류 제어 시스템을 위한 반송장비의 다중적재를 고려한 실시간 통합 디스패칭 로직)

  • Suh, Jungdae;Faaland, Bruce
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.3
    • /
    • pp.296-307
    • /
    • 2008
  • A semiconductor production system has sophisticated manufacturing operations and needs high capital investment for its expensive equipment, which warrants efficient real-time flow control for wafers. In the bay, we consider material handling equipment that can handle multiple carriers of wafers. The dispatching logic first determines the transportation time of each carrier to its destination by each unit of transportation equipment and uses this information to determine the destination machine and target carrier. When there is no available buffer space at the machine tool, the logic allows carriers to stay at the buffer of a machine tool and determine the delay time, which is used to determine the destination of carriers in URL. A simulation study shows this dispatching logic performs better than the procedure currently in use to reduce the mean flow time and average WIP of wafers and increase efficiency of material handling equipment.

A Web-based Analysis and Design System for Automated Material Handling Equipment Applications (웹 기반의 자동물류설비 운영을 위한 분석 및 설계 시스템에 관한 연구)

  • Cho, Chi-Woon;Yu, Woo-Yeon;Yang, Jae-Kyung
    • IE interfaces
    • /
    • v.18 no.4
    • /
    • pp.431-443
    • /
    • 2005
  • This paper describes a web-based system called DESIGNER for the analysis and design for automated material handling equipment(MHE) applications in manufacturing. DESIGNER models the processes for system integration, economic analysis, performance analysis, and automated storage/retrieval system(AS/RS) design. Based on the information specified by users, the various analysis modules are invoked to meet the needs of the material handling applications. The results of the analyses provide system users with useful data for material handling system design and decision on investment in automated MHE. Example problems are also presented to demonstrate the use of the system.

A Study on the Estimation Process of Material handling Equipment for Offshore Plant Using System Engineering Approach (시스템엔지니어링 기반 해양플랜트 Material handling 장비 수량산출 프로세스에 관한 연구)

  • Han, Seong-Jong;Seo, Young-Kyun;Cho, Mang-Ik;Kim, Hyung-Woo;Park, Chang-soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.785-795
    • /
    • 2019
  • This paper is a study on the modeling of the quantity estimation model for offshore plant Material handling equipment in FEED(Front End Engineering Design) verification stage using system engineering approach which is an engineering design methods. The relevant engineering execution procedure is not systemized although the operation method and Material handling equipment selection with weight and space constraints is a key part of the FEED. Using the system engineering process, the stakeholder requirements analysis process, the system requirements analysis, and the final system architecture design were sequentially performed, and the process developed through the functional development diagram and Requirement traceability matrix (RTM) was verified. In addition, based on the established process, we propose a Material handling quantity estimation model and Quantity calculation verification Table that can be applied at the FEED verification stage and we verify the applicability through case studies.

Preliminary design of a production automation framework for a pyroprocessing facility

  • Shin, Moonsoo;Ryu, Dongseok;Han, Jonghui;Kim, Kiho;Son, Young-Jun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.478-487
    • /
    • 2018
  • Pyroprocessing technology has been regarded as a promising solution for recycling spent fuel in nuclear power plants. The Korea Atomic Energy Research Institute has been studying the current status of equipment and facilities for pyroprocessing and found that existing facilities are manually operated; therefore, their applications have been limited to laboratory scale because of low productivity and safety concerns. To extend the pyroprocessing technology to a commercial scale, the facility, including all the processing equipment and the material-handling devices, should be enhanced in view of automation. In an automated pyroprocessing facility, a supervised control system is needed to handle and manage material flow and associated operations. This article provides a preliminary design of the supervising system for pyroprocessing. In particular, a manufacturing execution system intended for an automated pyroprocessing facility, named Pyroprocessing Execution System, is proposed, by which the overall production process is automated via systematic collaboration with a planning system and a control system. Moreover, a simulation-based prototype system is presented to illustrate the operability of the proposed Pyroprocessing Execution System, and a simulation study to demonstrate the interoperability of the material-handling equipment with processing equipment is also provided.

Handling of Polyethylene Sheet Plate in Press Process (프레스 박판 소재의 취급성)

  • Mok, Hak-Soo;Kim, Gyung-Yun
    • IE interfaces
    • /
    • v.7 no.2
    • /
    • pp.145-155
    • /
    • 1994
  • In this paper, we analyzed weak points of press process with the rolled thin flexible plate. The problems which are caused by the adhesion of blank on the surface of die and the separation of blank from scrap during its transportation after blanking were solved by the redesign of the structure of die and the development of special equipment for material handling. It is our purpose to make better the automation of blanking process and the safety for worker by the improvement of flexible material handling.

  • PDF

Factors Influencing the Effectiveness of Materials Handling Equipments Supplied in Agriculture

  • Park, Sung-Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.503-507
    • /
    • 2011
  • Objective: This paper presents the factors influencing the effectiveness of materials handling equipments in agriculture. Background: Agriculture is one of the job categories where work-related musculoskeletal disorders(MSDs) are the most common. Statistics shows that majority of farm workers is exposed to repetitive and forceful body movements, lifting, lowering, pushing, pulling, or carrying heavy materials. In such a working environment, materials handling equipments are required and introduced to assist in the prevention of MSDs and other farm injuries. Method: Examples of materials handling equipments are rail carts, portable lifts, and bale handlers. Contributing factors influencing the effectiveness of materials handling equipments supplied in agriculture were identified based on the lessons learned from previous government-funded ergonomic projects. Results: Contributing factors identified include: (1) forward-looking attitude for the standardization of farming, its environments, and handling equipments, (2) participation of farm members in the process and evaluation of project, (3) leadership of project manager, (4) reinforcement of safety education and training, and (5) project selection and priority of handling equipment. Conclusion: Government-funded research planners, farmers, ergonomists, and farm machine experts are recommended to consider the factors identified when implementing materials handling equipments in agriculture. Application: Actual or potential application of this research includes recommendation for the effective implementation of material materials handling equipments in agricultural sectors.

Analysis of Transportation and Handling system for Advanced spent fuel management process (사용후핵연료 차세대관리공정 운반취급계통 분석)

  • 홍동희;윤지섭;정재후;김영환;박병석;박기용;진재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1438-1441
    • /
    • 2003
  • The project for "Development of Advanced Spent Fuel Management Technology" has a plan of a demonstration for the Advanced Management Process in the hot cell of IMEF. The Advanced Management Process are being developed for efficient and safe management of spent fuels. For the demonstration, several devices which are used to safely transport and handle nuclear materials without scattering have been derived by analyzing the Advanced Management Process, object nuclear material and modules of process equipment and performing graphical simulation of transportation/handling by computers. For verification, powder transportation vessel and handling device have been designed and manufactured. And several tests such as transporting, grappling, rotating the vessel have been performed. Also, the design requirements of transportation/handling equipment have been analyzed based on test results and process studies. The developed design requirements in this research will be used as the design data for the Advanced Management Process.

  • PDF