• Title/Summary/Keyword: Material function

Search Result 4,123, Processing Time 0.026 seconds

An Equation for the Prediction of Material Function of Super Soft Clay (초연약 점토의 구성관계 산정식)

  • Kang, Myoung-Chan;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.221-228
    • /
    • 2003
  • In land reclamation construction using marine clay, a measure of material function, that is, the relation between void ratio-effective stress and permeability, is very important aspect for the prediction of self-weight consolidation behavior. But reclaimed ground has very high water content, so there are many difficulties in the laboratory test for measuring material function. For this reason, some researches are carried out using slurry cconsolidometr to measure material function. In this study, material function was measured using slurry consolidometer, and to overcome the shortcoming of researches using slurry cosolidometer, an equation for the prediction of material function was proposed on the basis of column test's parameter. Material function was determined through low stress consolidation test and permeability test, and it also was calculated with the equation using column test parameter. The continuity of material function could be confirmed through these tests. Material function is easily determined with the equation proposed in this study, and can be used for the prediction of self-weight consolidation behavior.

An endochronic model of material function and its application to plastic behavior of metals under asymmetric cyclic loadings

  • Yeh, Wei-Ching;Lin, Hsi-Yen;Jhaot, Jhen-Bo
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.423-444
    • /
    • 2007
  • By using the incremental form of the endochronic theory of plasticity, a model of material function is proposed in this paper to investigate plastic behavior. By comparing the stress-strain hysteresis loop, the theory is shown to agree well with the experimental results, especially in the evolution of peak stress values of SAE 4340 steel loaded by cyclic loading with various amplitudes. Depending on the choice of material parameters, the present model can substantially result in six categories of material function, each of which can behave differently with respect to an identical deformation history. In addition, the present model of material function is shown to be capable of describing the behavior of erasure of memory of materials, as experimentally observed by Lamba and Sidebottom (1978).

AN ENERGY FUNCTION FOR TRANSVERSELY-ISOTROPIC ELASTIC MATERIAL AND THE PONYTING EFFECT

  • Akinola, Ade
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.873-884
    • /
    • 1999
  • On the basis of the semi-linear material of John invoking the theory of homogenization for heterogeneous media and the theory of invariants for isotropic scalar functions an energy function is built for a transversely-isotropic medium in finite elastic deformation. The ponyting Effect for material in simple shear is reviewed for this case of transversal isotropy. It is shown that this effect is apprehended by the constructed energy function.

Estimating Material Parameters of Rubber-liked Material Similar to Biomaterial (생체 유사재료를 설명하는 물질 상수 추정)

  • Kang, Taewon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • It is important to have a well developed strain energy function in order to understand the mechanical behavior of biomaterial like the blood vessel of artery. However, since it is not possible to have a complete form of strain energy function of artery, theoretical framework describing the behaviour of Rubber-like material which is similar to blood vessel is applied to infer useful forms of strain energy function of biomaterial. Based on Chuong-Fung model and Mooney-Rivlin model, material parameters are estimated based on experimental data. From the results, it can be inferred that the estimated parameters can be used to explain the difference of mechanical characteristics between normal vessel and vessel with stent.

An advanced criterion based on non-AFR for anisotropic sheet metals

  • Moayyedian, Farzad;Kadkhodayan, Mehran
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1015-1038
    • /
    • 2016
  • In the current research an advanced criterion with non-associated flow rule (non-AFR) for depicting the behavior of anisotropic sheet metals is presented to consider the strength differential effects (SDEs) for these materials. Owing to the fact that Lou et al. (2013) yield function is dependent on structure of an anisotropic material (BCC, FCC and HCP), an advanced yield function with inspiring of Yoon et al. (2014) yield function is proposed which is dependent upon anisotropic structures. Furthermore, to compute Lankford coefficients, a new pressure sensitive plastic potential function which would be dependent to anisotropic structure is presented and coupled with the proposed yield function with employing a non-AFR in a novel criterion which is called here 'dvanced criterion'. Totally eighteen experimental data are required to calibrate the criterion contained of directional tensile and compressive yield stresses for the yield function and directional Lankford coefficients for the plastic potential function. To verify the criterion, three anisotropic sheet metals with different structures are taken as case studies such as Al 2008-T4 (a BCC material), Al 2090-T3 (a FCC material) and AZ31 (a HCP material).

Development for Eco-Design of Hydraulic Structures based on Web-based Information System (친환경 정비공법 선정 지원을 위한 웹기반 정보시스템 구축)

  • Cho, Young-Kweon;Kim, Kwan-Ho;Kim, Han-Joong;Choi, Soo-Myung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.95-106
    • /
    • 2008
  • Eco-friendly material and implementation methods have become important along with the existing standardized maintenance concept for the irrigation and flood control. However, the intrinsic function of the hydraulic structure is water supply and disaster prevention. Therefore, the material and work methods should be considered both eco-friendliness, durability and safety which are prerequisite elements to maintain the engineering function. In this study eco-friendly material and work methods would be classified into the vegetation based system, eco-friendly concrete system and stone-material system according to the characteristics of material. The quality standard for durability followed KS specification and related regulations. The quality standard for safety and eco-friendliness was set after literature review, and the database was developed using the standard. The structure applicable to onsite - the eco-friendly material and work method were classified based on the function and material of the hydraulic structure. Finally, database has been established for convenient management and selection of the proper material and work method. The eco-friendly material and work method could be searched easily for the convenience of the users, and the web-based data system has been developed for continuous registration of the material and work methods to be developed in the future.

Optimizing structural topology patterns using regularization of Heaviside function

  • Lee, Dongkyu;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1157-1176
    • /
    • 2015
  • This study presents optimizing structural topology patterns using regularization of Heaviside function. The present method needs not filtering process to typical SIMP method. Using the penalty formulation of the SIMP approach, a topology optimization problem is formulated in co-operation, i.e., couple-signals, with design variable values of discrete elements and a regularized Heaviside step function. The regularization of discontinuous material distributions is a key scheme in order to improve the numerical problems of material topology optimization with 0 (void)-1 (solid) solutions. The weak forms of an equilibrium equation are expressed using a coupled regularized Heaviside function to evaluate sensitivity analysis. Numerical results show that the incorporation of the regularized Heaviside function and the SIMP leads to convergent solutions. This method is tested using several examples of a linear elastostatic structure. It demonstrates that improved optimal solutions can be obtained without the additional use of sensitivity filtering to improve the discontinuous 0-1 solutions, which have generally been used in material topology optimization problems.

Thermal Stress Calculations Using Enhanced Green's Function Considering Temperature-dependent Material Properties (온도 의존적 재료물성치를 고려한 개선된 그린함수 기반 열응력 계산)

  • Han, Tae-Song;Huh, Nam-Su;Jeon, Hyun-Ik;Ha, Seung-Woo;Cho, Sun-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.535-540
    • /
    • 2015
  • We propose an enhanced Green's function approach to predict thermal stresses by considering temperature-dependent material properties. We introduce three correction factors for the maximum stress, the time taken to reach maximum stress, and the time required to attain steady state based on the Green's function results for each temperature. The proposed approach considers temperature-dependent material properties using correction factors, which are defined as polynomial expressions with respect to temperatures based on Green's functions, that we obtain from finite-element (FE) analyses at each temperature. We verify the proposed approach by performing detailed FE analyses on thermal transients. The Green's functions predicted by the proposed approach are in good agreement with those obtained from FE analyses for all temperatures. Moreover, the thermal stresses predicted using the proposed approach are also in good agreement with the FE results, and the proposed approach provides better predictions than the conventional Green's function approach using constant, time-independent material properties.

AN INDIFFERENT CONSTITUTIVE LAW IN FINITE ELASTICITY

  • Akinola, Ade
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.919-934
    • /
    • 2001
  • The concepts of material frame-indifference and material symmetry group with respect to isotropic scalar functions, as represented by energy functions, are discussed. An energy function for a structured heterogeneous (transversal isotropic) medium in large elastic deformations, which is known to satisfy the Ponyting’s effect [1], is highlighted. It is shown that the constitutive relation due to this energt function is material frame-indifferent.

Calculation of Intensity Factors Using Weight Function Theory for a Transversely Isotropic Piezoelectric Material (횡등방성 압전재료에서의 가중함수이론을 이용한 확대계수 계산)

  • Son, In-Ho;An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.149-156
    • /
    • 2012
  • In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two-dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory.