Browse > Article
http://dx.doi.org/10.12989/sem.2007.25.4.423

An endochronic model of material function and its application to plastic behavior of metals under asymmetric cyclic loadings  

Yeh, Wei-Ching (Department of Mechanical Engineering, National Central University)
Lin, Hsi-Yen (Patent Division III, Intellectual Property Office, Ministry of Economic Affairs)
Jhaot, Jhen-Bo (Department of Mechanical Engineering, National Central University)
Publication Information
Structural Engineering and Mechanics / v.25, no.4, 2007 , pp. 423-444 More about this Journal
Abstract
By using the incremental form of the endochronic theory of plasticity, a model of material function is proposed in this paper to investigate plastic behavior. By comparing the stress-strain hysteresis loop, the theory is shown to agree well with the experimental results, especially in the evolution of peak stress values of SAE 4340 steel loaded by cyclic loading with various amplitudes. Depending on the choice of material parameters, the present model can substantially result in six categories of material function, each of which can behave differently with respect to an identical deformation history. In addition, the present model of material function is shown to be capable of describing the behavior of erasure of memory of materials, as experimentally observed by Lamba and Sidebottom (1978).
Keywords
endochronic theory; cyclic loading conditions; material function; erasure of memory;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Basuroychowdhury, I.N. and Voyiadjis, G.Z. (1998), 'A multiaxial cyclic plasticity model for nonproportional loading cases', Int. J. Plasticity, 14, 855-870   DOI   ScienceOn
2 Beaudoin, A.J., Dawson, P.R., Mathur, K.K., Kocks, U.F. and Korzekwa, D.A. (1991), 'Application of polycrystalline plasticity to sheet forming', Comp. Math. Appl. Mech. Eng., 117, 49-70
3 Cailletaud, G. (1984), 'Some elements on multiaxial behavior of 316L stainless steel at room temperature', Mech. Mater, 3, 333-345   DOI   ScienceOn
4 Calloch, S. and Marquis, D. (1997), 'Additional hardening due to tension-torsion nonproportional loadings: influence of the loading shape; multiaxial fatigue and deformation testing techniques', In: Kalluri, S., Bonacuse, P.J.(Eds.) ASTM STP 1280. American Society for Testing and Materials, 113-130
5 Chang, K.C. and Lee, G.C. (1986), 'Biaxial properties of structural steel under nonproportional loading', J. Eng. Mech., 112, 792-805   DOI   ScienceOn
6 Dafalias,Y.F. and Aifantis, E.C. (1990), 'On the microscopic origin of the plastic spin', Acta Mech., 82, 31-48   DOI
7 Dafalias, Y.F. and Popov, E.P. (1976), 'Plastic internal variables formalism of plasticity', J. Appl. Mech., 43, 645-651   DOI
8 Ellyin, F. and Wolodko, J.D. (1997), 'Testing facilities for multiaxial loading of tubular specimens, multiaxial fatigue and deformation testing techniques', ASTM STP 1280, S. Kalluri and P.J. Bonacuse, Eds., ASTM, 724
9 Hopperstad, O.S., Langseth, M. and Remseth, S. (1995a), 'Cyclic stress-strain behaviour of alloy AA6060 T4, Part I: Biaxial experiments and modeling', Int. J. Plasticity, 11, 725-739   DOI   ScienceOn
10 Krempl, E. and Lu, H. (1984), 'The hardening and rate dependent behavior of fully annealed AISI type 304 stainless steel under biaxial in-phase and out-of-phase strain cycling at room temperature', J. Eng. Mater. Technol., 106, 376-384   DOI   ScienceOn
11 Krieg, R.D. (1975), 'A practical two surface plasticity theory', J. Appl. Mech., 42, 641-646   DOI
12 Kwofie, S. (2003), 'Description of cyclic hysteresis behavior based on one-parameter model', Maters. Sci. Eng., A357, 86-93
13 Lamba, H.S. and Siderbottom, O.M. (1978), 'Cyclic plasticity for nonproportional path: Part 1: Cyclic hardening, erasure of memory, and subsequent strain hardening experiments', J. Eng. Mater. Technol, 100, 96-103   DOI   ScienceOn
14 Miehe, C., Schotte, J. and Schroder, J. (1999), 'Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains', Comput. Mat. Sci., 16, 372-382   DOI   ScienceOn
15 Murakami, H. and Read, H.E. (1989), 'A second-order numerical scheme for integrating the endochronic plasticity equations', Comput. Struct., 31, 663-672   DOI   ScienceOn
16 Ning, J. and Aifantis, E.C. (1996), 'Anisotropic yield and plastic flow of polycrystalline solids', Int. J. Plasticity, 12, 1221-1240   DOI   ScienceOn
17 Pan, W.F. and Chern, C.H. (1997), 'Endochronic description for viscoplastic behavior of materials under multiaxial loading', Int. J. Solids Struct., 34, 2131-2160   DOI   ScienceOn
18 Pan, W.F. and Chiang, W.J. (1999), 'Endochronic analysis for rate-dependent elasto-plastic deformation', Int. J. Solids Struct., 36, 3215-3237   DOI   ScienceOn
19 Samson, Y., Hong S.G. and Lee, S.B. (2004), 'Phenomenological description of cyclic deformation using the overlay model', Mater. Sci. Eng., A364, 17-26
20 Rivlin, R.S. (1981), 'Some comments on the endochronic theory of plasticity', Int. J. Solids Struct., 17, 231-248   DOI   ScienceOn
21 Sandler, I.S. (1978), 'On the uniqueness and stability of endochronic theories of material behavior', J. Appl. Mech., 45, 263-266   DOI   ScienceOn
22 Shiao, Y.P. (2000), 'A study on multi axial cyclic loading and anisotropic plasticity of structural metals', Ph.D. Thesis, National Taiwan University, Dept. of C.E
23 Tanaka, E., Murakami, S. and Ooka, M. (1985b), 'Effects of plastic strain amplitudes on non-proportional cyclic plasticity', Acta Mech., 57, 167-192   DOI
24 Valanis, K.C. (1971), 'A theory of viscoplasticity without a yield surface, Part I: General theory', Arch. Mech., 23, 517-551
25 Valanis, K.C. (1980), 'Fundamental consequence of a new intrinsic time measure-plasticity as a limit of the endochronic theory', Arch. Mech., 32, 171-191
26 Valanis, K.C. and Fan, J. (1983), 'Endochronic analysis of cyclic elastoplastic strain fields in a notch plate', J. Appl. Mech., ASME, 50, 789-794   DOI
27 Valanis, K.C. (1984), 'Continuum foundations of endochronic plasticity', J. Eng. Mater. Technol., 106, 367-375   DOI   ScienceOn
28 Watanabe, O. and Atluri, S.N. (1986), 'Constitutive modeling of cyclic plasticity and creep, using an internal time concept', Int. J. Plasticity, 2, 107-134   DOI   ScienceOn
29 Wu, H.C. and Yip, M.C. (1981), 'Endochronic description of cyclic hardening behavior of metallic material', J. Eng. Mater. Technol, 103, 212-217   DOI   ScienceOn
30 Yeh, W.C. (1995), 'Verification of the endochronic theory of plasticity under biaxial load', J. the Chinese Institute of Engineers, 18(1), 25-34   DOI
31 Yeh, W.C., Ho, C.D. and Pan, W.F. (1996), 'An endochronic theory accounting for deformation induced anisotropy', Int. J. Plasticity, 12, 987-1004   DOI   ScienceOn
32 Tanaka, E., Murakami, S. and Ooka, M. (1985a), 'Effects of strain path shapes on non-proportional cyclic plasticity', J. Mech. Phys. Solids, 33(6), 559-575   DOI   ScienceOn
33 Wu, H.C., Yao, J.C. and Chu, S.C. (1986), 'Investigation of endochronic constitutive equation subject to plastic strain-controlled axial-torsional deformation', J. Eng. Mater. Technol, 108, 262-269   DOI   ScienceOn
34 Hopperstad, O.S., Langseth, M. and Remseth, S. (1995b), 'Cyclic stress-strain behaviour of alloy AA6060 T4, Part II: Biaxial experiments and modeling', Int. J. Plasticity, 11, 741-762   DOI   ScienceOn
35 Yeh, W.C., Cheng, J.Y. and Her, R.S. (1994), 'Analysis of plastic behavior to cyclically uniaxial tests using an endochronic approach', J. Eng. Mater. Technol, ASME, 116, 62-67   DOI   ScienceOn
36 Diard, O., Leclercq, S., Rousselier, G and Cailletaud, G. (2005), 'Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity: Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries', Int. J. Plasticity, 21, 691-722   DOI   ScienceOn
37 Mroz, Z. (1967), 'On the description of anisotropic workhardening', J. Mech. Phys. Solids, 15, 163-175   DOI   ScienceOn