• 제목/요약/키워드: Material change

검색결과 5,543건 처리시간 0.036초

마이크로캡슐 잠열 축열재 혼합수의 열물성에 관한 연구 (A Study on Thermo-Physical Properties of Microencapsulated Phase Change Material Slurry)

  • 임재근;최순열;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.962-971
    • /
    • 2004
  • This paper has dealt with thermo-physical properties of microencapsulated phase change material slurry as a latent heat storage material having a low melting point. The measured results of the thermo-physical properties of the test microencapsulated phase change material slurry, those are, density, specific heat, thermal conductivity and viscosity, were discussed for the temperature region of solid and liquid phases of the dispersion material (paraffin). The measurements of these properties of microencapsulated phase change material slurry have been carried out by using a specific-gravity meter, a water calorimeter, a differential scanning calorimeter(DSC), a transient hot wire method and rotating type viscometer, respectively. It was clarified that the additional properties law could be applied to the estimation of the density and specific heat of microencapsulated phase change material slurry and also the Euckens equation could be applied to the estimation of the thermal conductivity of this slurry.

수치해석과 실험을 통한 Can type container 내부 상변화 물질의 열유체적 특성분석 (Numerical analysis of the thermal fluid characteristics of phase change material in can type container)

  • 허승민;현수웅;정희준;신동호
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.63-71
    • /
    • 2023
  • Energy storage and distribution technologies are emerging as important factors as research on renewable energy continues. Analyzing the thermal flow of phase change material inside a latent heat storage device and to predict the phase change time is an important part for improvement of thermal performance. However, most of the current research is based on the trial-and-error experimental investigation to measure the phase change time. Therefore, in this study, a can-type phase change material container was designed, and the numerical method for analyzing the thermal flow of phase change material was established and validated. The error rate of the phase change time between the numerical and experimental results was within 5%, which proves its reliability. As a result, the phase change finishing times were found to be 78 minutes with inlet fluid temperature of 80℃ during charging process, and 126 minutes with inlet fluid temperature of 9℃ during discharging process.

응력확대계수측정을 위한 하중에 의한 자속밀도변화의 이론적 해석 (Theoretical Analysis of Change in Magnetic Flux Density Due to Load for Measuring KI)

  • 이정희
    • 한국산업융합학회 논문집
    • /
    • 제6권4호
    • /
    • pp.367-371
    • /
    • 2003
  • In order to determine the effective way of measuring the Mode I stress intensity factor for a material containing a two-dimensional surface crack by means of the alternating current potential drop(ACPD) technique, the change in magnetic flux density between crack surfaces and above the specimen surface due to load was studied theoretically. The magnetic flux density in the air between crack surfaces is uniform and above the specimen surface is not changed by increasing the load in the material. Therefore, the change in potential drop due to load in a measuring system which was designed to induce a large amount of electro-motive force was caused by the change in internal inductance of material, the change in the mutual inductance between internal inductance of material and measuring system and the change in the mutual inductance between internal inductance of material and power supply line.

  • PDF

상 변화 메모리 재료 내의 Ga 주입에 미치는 GaGe 스퍼터링 전력의 영향 (Effect of GaGe Sputtering Power on Ga Doping in Phase Change Memory Materials)

  • 정순원;이승윤
    • 한국전기전자재료학회논문지
    • /
    • 제28권5호
    • /
    • pp.285-290
    • /
    • 2015
  • The phase change memory material is an active element in phase change memory and exhibits reversible phase transition behavior by thermal energy input. The doping of the phase change memory material with Ga leads to the increase of its crystallization temperature and the improvement of its amorphous stability. In this study, we investigated the effect of GaGe sputtering power on the formation of the phase change memory material including Ga. The deposition rate linearly increased to a maximum of 127 nm and the surface roughness remained uniform as the GaGe sputtering power increased in the range from 0 to 75 W. The Ga concentration in the thin film material abruptly increased at the critical sputtering power of 60 W. This influence of GaGe sputtering power was confirmed to result from a combined sputtering-evaporation process of Ga occurring due to the low melting point of Ga ($29.77^{\circ}C$).

FCS 가변형 몰드 생산을 위한 PCM 분석 (Analysis of Phase Change Materials for Production of Changable Mold for Free-form Concrete Segment)

  • 이동훈;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.150-151
    • /
    • 2014
  • A mold of free-form concrete segment can be used only one time. Thus, the construction duration and cost are increased. The materials of the mold such as wood and metal have limitations due to the implementation and reuse. The review of the material of the mold for free-form concrete segment is needed to reduce duration and production cost. Phase change material can be used both to implement free-shape by heating and to produce mold after cooling. After using Phase change material can be re-used to mold by heating. The scope of this study is many kind of phase change materials for molding. The aim of this study is to analyze the phase change materials for production of changable mold for free-form concrete segment. In this study, the paraffin wax that is melted at 64℃ was selected by considering both the energy efficiency and the weather of Korea.

  • PDF

c-AFM 기술을 이용한 나노급 상변화 소자 특성 평가에 대한 연구 (The study about phase phase change material at nano-scale using c-AFM method)

  • 홍성훈;이헌
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.57-57
    • /
    • 2010
  • In this study, nano-sized phase change materials were evaluated using nanoimprint lithography and c-AFM technique. The 200nm in diameter phase change nano-pillar device of GeSbTe, AgInSbTe, InSe, GeTe, GeSb were successfully fabricated using nanoimprint lithography. And the electrical properties of the phase change nano-pillar device were evaluated using c-AFM with pulse generator and voltage source.

  • PDF

상변화 박막의 두께에 따른 상변화 메모리의 전류 및 열 특성 (Electrical and thermal characteristics of PRAM with thickness of phase change thin film)

  • 최홍규;김홍승;이성환;장낙원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.162-168
    • /
    • 2008
  • In this paper, we analyzed the heat transfer phenomenon and the reset current variation of PRAM device with thickness of phase change material using the 3-D finite element analysis tool. From the simulation, Joule's heat was generated at the contact surface of phase change material and bottom electrode of PRAM. As the thickness of phase change material was decreased, the reset current was highly increased. In case thickness of phase change material thin film was $200\;{\AA}$, heat increased through top electrode and reset current caused by phase transition highly increased. And as thermal conductivity of top electrode decreased, temperature of unit memory cell was increased.

겔 상태의 미세 잠열 축열재 혼합수의 기액직접접촉식 열교환법에 의한 방열 특성 (A Study on the Heat Release Characteristics of Gel Type Micro Size Latent Heat Storage Material Slurry with Direct Contact Heat Exchange Method)

  • 김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.618-623
    • /
    • 2004
  • This paper has dealt with the heat storage characteristics of gel type micro size latent heat storage material slurry. The heat release operation to the gel type micro size latent heat storage material slurry was carried out using hot air bubbles by direct contact heat exchange. This experiment was carried out using phase change material of n-paraffin so the heat release amount is higher than cold water system. The parameters of this experiment were concentration of latent heat phase change material, height of heat release bath and inlet velocity of hot air. The main results obtained are as follows : (1) The effect of concentration of latent heat phase change material dispersed with water is very affective to the direct contact heat exchange between hot air and gel type micro size latent heat storage material slurry. (2) It is clarified that the most effective concentration of latent heat phase change material dispersed with water exists around 20mass% at this type of direct heat exchange model experiment.

상변화 재료의 물질상수에 따른 PRAM cell의 전자장 및 열 해석 (Electromagnetic and Thermal Analysis of PRAM cell with phase change material)

  • 장낙원;김홍승;이성환;마석범
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.144-145
    • /
    • 2007
  • Phase change random access memory is one of the most promising candidates for next generation non-volatile memories. However, the high reset current is one major obstacle to develop a high density PRAM. One way of the reset current reduction is to develop the new phase change material. In this paper, to reduce the reset current for phase transition, we have investigated the effect of phase change material parameters using finite element analysis.

  • PDF

상부전극에 따른 상변화 메모리의 발열 특성 (Thermal characteristic of PRAM with top electrode)

  • 최홍규;장낙원;김홍승;이성환;마석범
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.97-98
    • /
    • 2007
  • In this paper, we analyzed the reset current variation of PRAM device with top electrode using the 3-D finite element analysis tool. As thickness of phase change material thin film decreased, reset current caused by phase transition highly increased. Joule's heat which was generated at the contact surface of phase change material and bottom electrode of PRAM was given off through top electrode to which was transferred phase change material. As thermal conductivity of top electrode decreased, heating temperate was increased.

  • PDF