• 제목/요약/키워드: Material Removal rate

검색결과 594건 처리시간 0.029초

Application of Potential-pH Diagram and Potentiodynamic Polarization of Tungsten

  • Seo, Yong-Jin;Park, Sung-Woo;Lee, Woo-Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권3호
    • /
    • pp.108-111
    • /
    • 2006
  • The oxidizer-induced corrosion state and microstructure of surface passive metal-oxide layer greatly influenced on the removal rate of tungsten film according to the slurry chemical composition of different mixed oxidizers. In this paper, the actual polishing mechanism and pH-potential equilibrium diagram obtained from potentiodynamic polarization curve were electrochemically compared. An electrochemical corrosion effect implies that slurries with the highest removal rate (RR) have the high dissolution rate.

퇴비 및 규산칼슘계 다공성 바이오필터의 벤젠휘발가스 처리 (Treatment of Benzene Vapor Gas with Compost and Calcium Silicate Porous Biofilters)

  • 박준석;남궁완;김순아;박영구;이노섭
    • 한국응용과학기술학회지
    • /
    • 제22권1호
    • /
    • pp.21-27
    • /
    • 2005
  • This study was conducted to evaluate the biofiltration treatment characteristic for benzene vapor gas. Compost and calcium silicate porous material were used as biofilter fillers. Gas velocity and empty bed retention time were 15 m/hr and 4 min, respectively. Benzene gas removal efficiency of P-Bio (calcium silicate porous material with inoculation) was the highest and maintained in over 98%. After shock input of benzene gas, the removal efficiency of P-Bio biofilter was recovered within 2 days, while 5 days were taken in CP-Bio (compost + calcium silicate porous material mixture with inoculation) and CP (compost + calcium silicate porous material mixture without inoculation) biofilters. The removal efficiency of P-Bio biofilter was near 100% in the loading rate of <$85g/m^3$(filling material)/hr, It was shown that the maximum elimination capacities of P-Bio, CP-Bio, and CP biofilters were 95, 69, and $66\;g/m^3$(filling material)/hr, respectively. Microbial number of P-Bio, which the number was the lowest at start-up, was 3 orders increased on operational day 48. $CO_2$ was generated greatly in order of P-Bio, CP-Bio, and CP biofilters.

Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material

  • Ince, Olcay K.;Aydogdu, Burcu;Alp, Hevidar;Ince, Muharrem
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.77-90
    • /
    • 2021
  • In the present study, novel chitosan coated magnetic magnetite (Fe3O4) nanoparticles were successfully biosynthesized from mushroom, Agaricus campestris, extract. The obtained bio-nanocomposite material was used to investigate ultra-fast and highly efficient for removal of Ni2+ ions in a fixed-bed column. Chitosan was treated as polyelectrolyte complex with Fe3O4 nanoparticles and a Fungal Bio-Nanocomposite Material (FBNM) was derived. The FBNM was characterized by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Fourier Transform Infrared spectra (FTIR) and Thermogravimetric Analysis (TGA) techniques and under varied experimental conditions. The influence of some important operating conditions including pH, flow rate and initial Ni2+ concentration on the uptake of Ni2+ solution was also optimized using a synthetic water sample. A Central Composite Design (CCD) combined with Response Surface Modeling (RSM) was carried out to maximize Ni2+ removal using FBNM for adsorption process. A regression model was derived using CCD to predict the responses and analysis of variance (ANOVA) and lack of fit test was used to check model adequacy. It was observed that the quadratic model, which was controlled and proposed, was originated from experimental design data. The FBNM maximum adsorption capacity was determined as 59.8 mg g-1. Finally, developed method was applied to soft drinks to determine Ni2+ levels. Reusability of FBNM was tested, and the adsorption and desorption capacities were not affected after eight cycles. The paper suggests that the FBNM is a promising recyclable nanoadsorbent for the removal of Ni2+ from various soft drinks.

소규모 축산폐수 처리를 위한 RBC/AFBR공정의 Package화 (Package of RBC/AFBR process for small-scale Piggery Wastewater Treatment)

  • 임재명;권재혁;류재근
    • 환경위생공학
    • /
    • 제11권2호
    • /
    • pp.43-52
    • /
    • 1996
  • Using rotating biological contactor(RBC) with artificial endogenous stage and aerobic fixed biofilm reactor(AFBR), organic material removal and biological nitrification of piggery wastewater has been studied at a pilot plant. RBC was operated in the endogenous phase at a interval of every 25 days. The concentration of COD, BOD and TKN in influent wastewater were from 2,940 to 3,800 mg/L, from 1,190 to 1,850 mg/L and from 486 to 754 mg/L respectively. The maximum active biomass content represented as VSS per unit aera was $2.0mg/cm$^{2}$ and biofilm dry density of $17mg/cm^{3}$ was observed at biofilm thickness of $900{\;}{\mu}m$. It was observed that the pilot scale RBC/AFBR process exhibited 72 percentage to 93 percentage of BOD removal, In order to obtain more than 90 percentage of BOD removal, the organic loading rate to the RBC/AFBR process should be maintained less than $0.09{\;}m^{3}/m^{2}{\cdot}day(125.9g{;\}BOD/m^{3}{\cdot}d$. The TKN removal efficiencies was from 45.5 to 90.9 percentage according to vary influent loading rate, It was estimated that the RBC/AFBR process consumed approximately 6.2 mg/L(as $CaCO_{3}$) of alkalinity per 1 mg/L of $NH_{3}$-N oxidized as the nitrification took piace.

  • PDF

이단미생물반응조에서 혼합 VOCs의 생분해 특성 (Biological Removal of a VOC Mixture in a Two-stage Bioreactor)

  • 송지현
    • 한국대기환경학회지
    • /
    • 제22권6호
    • /
    • pp.758-766
    • /
    • 2006
  • A two-stage bioreactor, which consists of a biotrickling filter module and a biofilter module in series, was investigated for the enhanced treatment of a VOC mixture, toluene and methyl ethyl ketone (MEK). Throughout the experiments, the overall inlet loading rate was maintained at approximately $43g/m^3/hr$, but the inlet ratios of the VOCs were modified. The experimental results showed that the different ratios of the VOC mixture resulted in changes of overall removal efficiencies, elimination capacities (ECs) and microbial accumulation on the surface of each packing material. The ratio of inlet toluene to MEK at 50 : 150 was found to be most effective in terms of the overall removal efficiency, because, at this condition, MEK (i.e., the hydrophilic compound) was mostly removed in the biotrickling filter module and the following biofilter module was used to remove toluene. It was also found that when the inlet loading rate of the VOC mixture was serially increased stepwise within short-term periods, the ECs for toluene dropped significantly but the ECs for MEK increased at the ratio of the VOC mixture. These results implied that substrate interaction and/or substrate preferable utilization might have an effect on the biological removal of each compound in the two-stage bioreactor; therefore, the bioreactor should be operated in the condition where the substrate interaction could be minimized in order to maximize overall performance of the two-stage bioreactor.

펄스 스트리머 방전을 이용한 NOx 제거 (Removal of NOx by Pulsed Streamer discharge)

  • 고희석;박재윤;김건호
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권8호
    • /
    • pp.807-811
    • /
    • 1997
  • In this paper we have investigated the removal characteristics of NOx by pulsed corona discharge with a multi-pointplane electrode where a magnetic field is applied in the discharge region. The efficiency of NOx removal was measured and analyzed as a function of pulse frequency gas flow rate NOx initial concentration magnetic flux density. In this result the highest removal efficiency of NOx was obtained at the following operating conditions; the frequency =400[Hz] gas flow =1[$\ell$/min] initial concentration= 400[ppm] and magnetic flux density=0.36[T].

  • PDF

코튼볼 여재의 여과 특성 실험 연구 (An experimental study on the filtration test of cotton ball filters)

  • 김성홍;김희준;김동한
    • 상하수도학회지
    • /
    • 제33권1호
    • /
    • pp.79-86
    • /
    • 2019
  • In order to measure the filtration characteristics of a cotton ball shape filter, the experiments of suspended solids(SS) surrogate material selection and filtration performance have been carried out in this study. Between the two materials of powdered activated carbon(PAC) and powdered red-clay, PAC is more suitable surrogate material in terms of experimental criteria and particle size distribution in the non-point source pollutants removal system. As a result of the filtration experiments with the cotton ball shape filter, the initial headloss was about 8 cm, and the headloss slightly increased over filtration time. The Kozeny-Carman equation was used to analyze the changes of pressure and porosity during the filtration. The initial porosity was calculated as 0.945 and it decreased to 0.936 at the end of design filtration time. As the filtration continued, the SS concentration of the filtered water gradually increased and the SS removal rate gradually decreased. When the SS target removal efficiency is assumed to be 80%, the cumulative SS removal capacity is expected as $28.8kg/m^2$. This means the volume loading rate of the cotton ball shape filter can be $115m^3/m^2$ when the typical SS concentration of non-point source water pollution is assumed as 250 mg/L.

자성체 물질을 이용한 수중의 세슘제거 동향 (Cesium removal in water using magnetic materials ; A review)

  • 여우석;조병래;김종규
    • 한국산업융합학회 논문집
    • /
    • 제21권6호
    • /
    • pp.395-408
    • /
    • 2018
  • Even after the Fukushima nuclear accident in 2011, the rate of production of electric energy using nuclear energy is increasing, but there is a great danger such as the radioactive waste produced when using nuclear power, the catastrophic accident of nuclear power plant, and connection with nuclear weapons. In particular, Cs present in the ionic form of alkaline elements has a long half-life (30.17 years) because it is readily absorbed by the organism and emits intense gamma rays, thus presenting a serious radiation hazard. Therefore, it must be completely removed before it can be released into the natural ecosystem, because it can adversely affect not only humans but also natural ecosystems. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. In addition, researches have been doing to synthesize magnetic materials with adsorbents such as HCF and PB, and it shows a great effect in the removal rate of Cs present in wastewater or the maximum Cs adsorption amount. In particular, when a magnetic material was applied, excellent results were obtained in which only Cs was selectively removed from other cations. However, new problems such as applicability in the sea where Cs is directly released, applicability in various pH ranges, and failure to preserve the magnetizing force possessed by the magnetic body have been found. However, researches using ferromagnetic field with stronger magnetic properties than those of magnetic bodies is considered to be insufficient. Therefore, it is considered that if the researches combining the ferromagnetic field with the magnetization ability and functional adsorbents more actively, the radioactive material Cs which adversely affects the natural ecosystem can be effectively removed.

충진제의 종류에 따른 습식 스크러버의 가스상 물질 제거특성 (Removal Characteristics of Gaseous Contaminants by a Wet Scrubber with Different Packing Materials)

  • 한방우;김학준;김용진;한경수
    • 한국대기환경학회지
    • /
    • 제23권6호
    • /
    • pp.744-751
    • /
    • 2007
  • Wet scrubber is widely used to remove toxic gaseous contaminants in various industries such as semi-conductor industry, display manufacturing industry and so on. In this study, to optimize a packed bed scrubber as one of typical wet scrubber size while keeping its performance, four different packing materials were investigated at different air flow rates, liquid-gas ratios and pH values. Ammonia, hydrochloric acid and hydrofluoric acid were used as test gases to characterize the scrubber performance. Gas removal efficiency increased as the packing size decreased, which resulted in the increase of specific surface area. The increase of air flow rate led to the decrease of gas removal efficiency, while the increase of liquid-gas ratio led to the increase of gas removal efficiency. For the case of $NH_3$ gas, lower pH, and for the cases of HCl and HF, higher pH contributed to higher gas removal efficiency. Gas removal efficiency of a wet scrubber increased in the order of HCl < $NH_3$ < HF according to its water solubility.

정수장에서 막여과 전처리용 F/A 공정 개발을 위한 Filtralite 여재의 적용성 연구 (A Study of Filtralite Media Applicability for Development F/A Process of Membrane Filtration Pre-treatment Process in the Water Purification Plant)

  • 김준현;전용성;곽영주;장정우
    • 멤브레인
    • /
    • 제25권6호
    • /
    • pp.503-514
    • /
    • 2015
  • 본 연구는 잔류함으로써 문제를 일으킬 수 있는 응집제를 사용하지 않고 물리적인 처리만을 사용하는 막여과 정수처리의 전처리로 F/A 공정을 구성하고자 하였고 이를 구성하는 여재의 성능을 연구하였다. 특히, 탁질 물질과 유기물 제거가 가능한 것으로 알려진 Filtralite의 도입 가능성을 검토하였다. Filtralite의 탁도 제거효율은 원수대비 83~84%로 여과사와 비슷한 결과 값을 나타내었으며 여재표면에 잘 발달된 공극 때문에 유기물 제거능은 여과사보다 50% 더 높게 나타났다. 따라서 F/A 공정을 구성함에 있어 여과사보다 Filtralite가 더 효율적이라 검토되었다. 활성탄과 연계한 F/A 공정을 구성하여 막여과 처리 시스템의 전처리효율을 실험한 결과, TOC 농도는 TMP의 증가에 큰 영향을 주는 것으로 판단되어 막오염 저감에 유기물 제어가 중요함을 확인하였으며 유기물 제거 효율이 뛰어난 여재 사용이 필요할 것으로 판단되었다.