• Title/Summary/Keyword: Material Removal rate

Search Result 593, Processing Time 0.025 seconds

The Effect of Pad Groove Dimension on Polishing Performance in CMP (CMP에서 패드 그루브의 채수가 연마특성에 미치는 영향)

  • Park, Ki-Hyun;Kim, Hyung-Jae;Jeong, Young-Seok;Jeong, Hae-Do;Park, Jae-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1308-1311
    • /
    • 2004
  • It is very important that get polishing characteristic that to be stable that accomplish planarization of high efficiency in chemical mechanical polishing, and there is repeatability Groove of pad causes much effects in flow of slurry among various factors that influence in polishing characteristic, is expected to cause change of lubrication state and polishing characteristic in contact between wafer and pad. Therefore, divided factors of pad groove by groove pattern, groove profile, groove dimensions. This research wishes to study effect that dimension of pad groove gets in polishing performance. When changed dimension (width, depth, pitch of groove) of groove, measured change of removal rate and friction force. According as groove dimension changes, could confirm that removal rate and friction force change. While result of this experiment studies effect of pad groove in CMP, it is expected to become small help.

  • PDF

Polishing Pad Analysis and Improvement to Control Performance (연마성능 제어를 위한 연마패드표면 해석과 개선)

  • Park, Jae-Hong;Kinoshita, Masaharu;Yoshida, Koichi;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.839-845
    • /
    • 2007
  • In this paper, a polishing pad has been analyzed in detail, to understand surface phenomena of polishing process. The polishing pad plays a key role in polishing process and is one of the important layer in polishing process, because it is a reaction layer of polishing[1]. Pad surface physical property is also ruled by pad profile. The profile and roughness of pad is controlled by different types of conditioning tool. Conditioning tool add mechanical force to pad, and make some roughness and profile. Formed pad surface will affect on polishing performance such as RR (Removal Rate) and uniformity in CMP Pad surface condition is changed by conditioning tool and dummy run and is stable at final. And this research, we want to reduce break-in and dummy polishing process by analysis of pad surface and artificial machining to make stable pad surface. The surface treatment or machining enables to control the surface of polishing pad. Therefore, this research intends to verify the effect of the buffing process on pad surface through analysis of the removal rate, friction force and temperature. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied because, this type of pad is most conventional type.

Predicting and Interpreting Quality of CMP Process for Semiconductor Wafers Using Machine Learning (머신러닝을 이용한 반도체 웨이퍼 평탄화 공정품질 예측 및 해석 모형 개발)

  • Ahn, Jeong-Eon;Jung, Jae-Yoon
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.61-71
    • /
    • 2019
  • Chemical Mechanical Planarization (CMP) process that planarizes semiconductor wafer's surface by polishing is difficult to manage reliably since it is under various chemicals and physical machinery. In CMP process, Material Removal Rate (MRR) is often used for a quality indicator, and it is important to predict MRR in managing CMP process stably. In this study, we introduce prediction models using machine learning techniques of analyzing time-series sensor data collected in CMP process, and the classification models that are used to interpret process quality conditions. In addition, we find meaningful variables affecting process quality and explain process variables' conditions to keep process quality high by analyzing classification result.

  • PDF

Micro-machining of Glasses using Chemical-assisted Ultrasonic Machining (화학적 초음파가공을 이용한 유리의 미세가공)

  • 전성건;신용주;김병희;김헌영;전병희
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2085-2091
    • /
    • 2003
  • An ultrasonic machining process has been known as efficient and economical means fer precision machining of glass or ceramic materials. However, because of its complexity, the mechanism of the machining process is still not well understood. Therefore, it is hard to optimize the process parameters effectively. The conventional ultrasonic machining which uses the abrasive slurry only, furthermore, is time-consuming and gives the relatively rough surface. In order to increase the material removal rate and improve the integrity of the machined surface, we have introduced the novel ultrasonic machining technique, Chemical-assisted UltraSonic Machining(CUSM). The desktop-style micro ultrasonic machine has been developed and the z-axis feed is controlled by the constant load control algorithm. To obtain the chemical effects, the low concentration HF(hydrofluoric acid) solution, which erodes glass, added to alumina slurry. Through various experiments and comparison with conventional results, the superiority of CUSM is verified. MRR increases over 200%, the surface roughness is improved and the machining load decreases dramatically.

Feedrate Optimization using CL Surface (공구경로 곡면을 이용한 이송속도 최적화)

  • 김수진;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.547-552
    • /
    • 2003
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR (material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over 300m. so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL(cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants wire applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to speaker mold machining. The finishing time was reduced to 12.6%. tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were removed.

  • PDF

Efficient 5-axis Machining of a Propeller using Geometric Properties (기하학적 특성을 이용한 프로펠러의 효율적인 5축가공)

  • Hwang, Jong-Dae;Yun, Il-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.71-78
    • /
    • 2020
  • The rotary feed axes of a 5-axis machine tool can increase the freedom of the tool posture, while reducing feed speed and rigidity. In addition, as a ball-end mill is inevitably used during machining by rotational feed, the step-over length is reduced compared to the flat-end mill, thereby reducing the material removal rate. Therefore, this study attempts to improve the material removal rate, feed speed, and machining stability using the corner radius flat-end mill and a fixed controlled machining method for the rotary feed axes during roughing. In addition, the tapered ball-end mill and simultaneously controlled machining method for the rotary feed axes were used for finishing to improve the propeller's 5-axis machining efficiency by enhancing the surface quality. In order to create the tool path effectively and easily, we propose a specific approach for using the propeller's geometric properties and evaluate the effectiveness of the proposed method by comparing it with the method of the dedicated module.

The Effect of Ultrasonic Vibration Table on ELID Grinding Process of Aluminum Nitride Ceramics (초음파 진동 테이블이 질화알루미늄 세라믹의 ELID 연삭 가공에 미치는 영향)

  • Kwak, Tea-Soo;Jung, Myung-Won;Kim, Geon-Hee;Kwak, Ihn-Sil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1237-1243
    • /
    • 2013
  • This study has focused on the effect of ultrasonic vibration table in ELID grinding process of aluminum nitride ceramics. Aluminum nitride ceramics has superior physical and chemical properties and widely used in IC, LSI substrate, package and so on. To achieve the high effective machining of brittle and high strength ceramics as like aluminum nitride, machining method combined ELID grinding and ultrasonic vibration has been adopted in this study. From the experimental results, material removal rate, MRR has been increased maximum 36 percent and spindle resistance has been decreased in using ultrasonic table. Surface roughness of ground surface became a little worse in using ultrasonic table but was somewhat improved in feed direction.

The Cu-CMP's features regarding the additional volume of oxidizer to W-Slurry (W-slurry의 산화제 첨가량에 따른 Cu-CMP특성)

  • Lee, Woo-Sun;Choi, Gwon-Woo;Seo, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.370-373
    • /
    • 2003
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Chemical-Mechanical Planarization(CMP) of conductors is a key process in Damascene patterning of advanced interconnect structure. The effect of alternative commerical slurries pads, and post-CMP cleaning alternatives are discuess, with removal rate, scratch dentisty, surface roughness, dishing, erosion and particulate density used as performance metrics. Electroplated copper depostion is a mature process from a historical point of view, but a very young process from a CMP persperspective. While copper electrodepostion has been used and stuidied for dacades, its application to Cu damascene wafer processing is only now ganing complete accptance in the semiconductor industry. The polishing mechanism of Cu CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. however it is important to understand the effect of oxidizer on copper pasivation layer in order to obtain higher removal rate and non-uniformity during Cu-CMP process. In this paper, we investigated the effects of oxidizer on Cu-CMP process regarding the additional volume of oxidizer.

  • PDF

Multi-pole anisotropic Sr-ferrite sintered magnets fabricated by powder injection molding (분말사출성형으로 제조된 다극 이방성 Sr-페라이트 소결자석)

  • Cho, Tae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.284-287
    • /
    • 2001
  • Multi-pole anisotropic Sr-ferrite sintered magnets has been studied by powder injection molding under applied magnetic field. The orientation of anisotropic Sr-ferrite powders higher than 80% during injection molding is achieved at the following conditions; apparent viscosity lower then 2500 poise in 1000 $sec^{-1}$ shear rate and applied magnetic field higher then 4 kOe. For the high fluidity and strength of injection molded compact, and the effective binder removal without defects during solvent extraction and thermal debinding, the optimum multi-binder composition is paraffin wax(PW)/carnauba wax(CW)/HDPE = 50/25/25 wt%. The rate of binder removal is proportional to the mean particle size of Sr-ferrite powders whereas it is inversely proportional to the content of Sr-ferrite powders and the sample thickness. The high magnetic properties of Sr-ferrite sintered magnets are; 3.8 kG of remanent flux density, 3.4 kOe of intrinsic coercivity, and 1.2 kG of surface flux density (l-mm-thick) in the direction of applied magnetic field.

  • PDF

Planarization Characteristics of CMP for WO3 Film with an Addition of Oxidizers (산화제 첨가에 따른 WO3 박막의 CMP 평탄화 특성)

  • Lee, Woo-Sun;Ko, Pil-Ju;Kim, Nam-Hoon;Seo, Yong-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.12-16
    • /
    • 2005
  • Chemical mechanical polishing (CMP) process is one of the most useful methods for improving the surface roughness of films. The effects of CMP on the surface morphology of WO$_3$ films prepared by RF sputtering system were investigated in this paper. A removal rate of films increased, and the uniformity performance of surface decreased with the addition of an oxidizer to the tungsten slurry. Non-uniformity performance of surface was superior as its value was below 5 % when oxidizers of 5.0 vol% and 2.5 vol%, respectively, were added to the tungsten slurry. The optimized oxidizer concentration, reflected both the improved roughness values and hillock-free surface with the good uniformity performance, was 5.0 vol% as an atomic force microscopy(AFM) analysis of thin film topographies. Our CMP results will be a useful reference for advanced technology of thin films for gas sensor applications in the near future.