• Title/Summary/Keyword: Material Cost

Search Result 3,030, Processing Time 0.026 seconds

A Study on the Escalation Method for Contract Adjustment Public Construction Project (물가변동에 따른 계약금액 조정방식의 지수조정율 산출에 관한 연구)

  • Bae Kyoung-Tae;Choi Dong-Soo;Hwang Chi Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • The business market of architecture has got a system that controls a deposit according to the price function. This system is written on a law of contract about countries. So the main body of construction has to make a reasonable contract. This study is written about a rate of numerical index on controling a deposit. We tried to fine problems and solutions of labor expenses, instrument costs and material costs which is so big and changable on the construction market Labor expenses are expressed according to the rate of construction scale between direct and indirect cost that applies ability of works. Instrument costs are expressed according to an output method of a unit price annually and a weight allowance of local instrument conditions and use frequence. The last material costs expressed according to a local weight allowance make a decision of the material cost index. They applies locally relative index more than absolute one on what uses the price rate of producers and importations. This solutions are not enough to apply to the real market, so it needs to exam and to be on the market after a feasibility study.

  • PDF

INVESTIGATION OF ACTIVATED CARBON ADSORBENT ELECTRODE FOR ELECTROSORPTION-BASED URANIUM EXTRACTION FROM SEAWATER

  • ISMAIL, AZNAN FAZLI;YIM, MAN-SUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.579-587
    • /
    • 2015
  • To support the use of nuclear power as a sustainable electric energy generating technology, long-term supply of uranium is very important. The objective of this research is to investigate the use of new adsorbent material for cost effective uranium extraction from seawater. An activated carbon-based adsorbent material is developed and tested through an electrosorption technique in this research. Adsorption of uranium from seawater by activated carbon electrodes was investigated through electrosorption experiments up to 300 minutes by changing positive potentials from +0.2V to +0.8V (vs. Ag/AgCl). Uranium adsorption by the activated carbon electrode developed in this research reached up to 3.4 g-U/kg-adsorbent material, which is comparable with the performance of amidoxime-based adsorbent materials. Electrosorption of uranium ions from seawater was found to be most favorable at +0.4V (vs. Ag/AgCl). The cost of chemicals and materials in the present research was compared with that of the amidoxime-based approach as part of the engineering feasibility examination.

Design Optimization of Complex Loaded Tower Using Composite Materials in Off and On Shore (복합재료를 이용한 Off/On Shore에서의 복합하중을 받는 Tower에 대한 최적설계)

  • Son, Choong-Yul;Byun, Hyo-In;Kim, Sung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.289-294
    • /
    • 2002
  • Unlike Tubular Steel Tower, This Composite Material Tower is a low-technology Component, whose design is easy to optimize, and which therefore during the design process-lends itself easily as an object for possible cost reduction at very little effort. This may come in useful as the cost of a tower usually significant part of the total cost of a structure. This paper is written by the Composite Materials Tower which loaded Complex loading in Off and On shore. This Composite Material Tower is made by the Method of Filament Winding, and the Component of Composite Material is used by the Roving RS220PE-535. When it loaded Complex trading, there is a results which is bigger than steel tower deflection. We controlled this 1a18e deflection by stiffeners which has thickness 20mm. At last, Off and On Shore Tower which used Composite Materials is compared with Off and On Shore Tower which used Steel.

  • PDF

Analysis of inverters for coupling resonators of monoblock dielectric band-pass filter (일체형 유전체 대역 통과 필터의 공진기 결합용 인버터 해석)

  • 강종윤;최지원;심성훈;윤석진;김현재;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.191-194
    • /
    • 1999
  • Recently, with the rapid development and demand for compactness of portable communications, the requirement for compact and low-cost filter is increasing. One of the methods for reducing size and cost is to use high dielectric constant and low loss dielectric material in filter. The other is new monoblock dielectric band-pass filter (BPF) which has holes in a single dielectric body without additional coupling elements. This structure effectively reduces the size and cost of the filters. For previous conventional coaxial type dielectric BPF, dielectric substrates were used for coupling between adjacent resonators and additional input and output ports were needed. Coupling between adjacent resonators of monoblock BPF can be otained via electrode pairs. Capacitances of electrode pair structure for coupling are intensively investigated by 3-D FEM. The BPF for PCS has been designed to have a 30 MHz pass-bandwidth with center frequency of 1855 MHz and an attenuation pole at below the passband using a commercial 3-D structure simulator.

  • PDF

[ $a-Si:H/{\mu}c-Si:H$ ] thin-film tandem solar cells (비정질/마이크로 탠덤 구조형 실리콘 박막 태양전지)

  • Lee, Jeong-Chul;Song, Jin-Soo;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.228-231
    • /
    • 2006
  • This paper briefly introduces silicon based thin film solar cells: amorphous (a-Si:H), microcrystalline ${\mu}c-Si:H$ single junction and $a-Si:H/{\mu}c-Si:H$ tandem solar cells. The major difference of a-Si:H and ${\mu}c-Si:H$ cells comes from electro-optical properties of intrinsic Si-films (active layer) that absorb incident photon and generate electron-hole pairs. The a-Si:H film has energy band-gap (Eg) of 1.7-1.8eV and solar cells incorporating this wide Eg a-Si:H material as active layer commonly give high voltage and low current, when illuminated, compared to ${\mu}c-Si:H$ solar cells that employ low Eg (1.1eV) material. This Eg difference of two materials make possible tandem configuration in order to effectively use incident photon energy. The $a-Si:H/{\mu}c-Si:H$ tandem solar cells, therefore, have a great potential for low cost photovoltaic device by its various advantages such as low material cost by thin-film structure on low cost substrate instead of expensive c-Si wafer and high conversion efficiency by tandem structure. In this paper, the structure, process and operation properties of Si-based thin-film solar cells are discussed.

  • PDF

A Study on Re-calculation of Recycling Standard Cost through the Analysis on Standard Cost (표준원가 분석을 통한 재활용 기준비용 재산정에 관한 연구)

  • Lee, Hee-Nahm;Choi, Yoon-Jeong
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.189-193
    • /
    • 2011
  • The current standard cost for recycling applied under the Extended Producer Responsibility(EPR) institution, is not coping with continuously increased number of obligatory subject items as well as a variety of variable cost changing factors regarding the recycling treatment cost caused by price fluctuation such as increased material and labor cost entirely across the society; changes in recycling treatment process following the developing technologies; and changes in the required work forces and equipments followed by the trends of automated facilities. Despite such various cost fluctuation factors, the current EPR is not coping with the trends, making the re-calculation process difficult, which causes differences between the real treatment cost for recycling. In this study, the analysis was made on main factors affecting on the related cost and the related price changing index was calculated, by conducting the influence evaluation on the standard cost factors of the current standard cost for recycling. Through theses results, more objective standard will be set for the re-calculation of standard cost for recycling to greatly contribute to setting up the midterm and long-term strategies in the future towards efficient institution.

Selection of management factors for material distribution management according to materail management indexes (자재물류관리를 위한 자재 속성별 자재관리 지표)

  • Ha, Young-Seo;Yu, Jung-Ho;Kim, Chang-Duk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.553-557
    • /
    • 2007
  • In general, material cost of a construction project is more than 30$^{\sim}$40% of total construction cost, thus on site material control is very important. The factthat buildings have recently become higher and bigger also increases the importance of on site material control. However, on site material control has not been considered as an important management issue. This study classifies building construction materials considering the material delivery characteristics such as ETO, ATO, MTO and MTS and the unique characteristics of each materials. Using the classification, this study examine the requirements for on site material control of each materials. Finally, this study suggests on site material control systems for each construction material.

  • PDF

Multi-objective Optimum Structural Design of Marine Structure Considering the Productivity

  • Lee, Joo-Sung;Han, Jeong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.1-5
    • /
    • 2009
  • It is necessary to develop an efficient optimization technique to optimize engineering structures that have given design spaces, discrete design values, and several design goals. In this study, an optimum algorithm based on the genetic algorithm was applied to the multi-object problem to obtain an optimum solution that simultaneously minimizes the structural weight and construction cost of panel blocks in ship structures. The cost model was used in this study, which includes the cost of adjusting the weld-induced deformation and applying the deformation control methods, in addition to the cost of the material and the welding cost usually included in the normal cost model. By using the proposed cost model, more realistic optimum design results can be expected.

Integration Model of Cost and Schedule in Aluminum Form Work based on Quantity Take-offs and Daily Productivity Analysis (물량 산출 및 생산성 분석 기반의 거푸집공사 비용공정 통합 모델)

  • Ji, Soung-Min;Hyun, Chang-Taek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.17-18
    • /
    • 2011
  • Over the past 20 years, Researchers have tried to develop "Integration Model of Cost and Schedule" in construction industry. They suggested various models and techniques, however, it is still required to develop new methodology for AL Form Work in Public Multi-Housing Projects. Accordingly, this research focused on measuring quantity take-offs of on-going projects and analysing the basic process of using the resources(Labor, Material, Plant) related to cost and time data. There are 3 steps of this research : 1) The literature review of previous studies about Integration Model of Cost and Schedule was conducted. 2) Model for integration between cost and schedule was developed. 3) the accuracy of developed model was verified. The results are expected to improve in integrated managing the cost and schedule data of AL form work.

  • PDF

Structural Cost Optimization for Building Frame System Using High-Strength Steel Members (고강도 강재를 사용한 건물골조방식 구조물의 구조비용 최적화)

  • Choi Sang-Hyun;Kwon Bong-Keun;Kim Sang-Bum;Seo Ji-Hyun;Kwon Yun-Han;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.541-548
    • /
    • 2006
  • This study presents a structural cost optimization method for building frame system using high-strength steel members. In, this optimization method, the material cost of steel member is involved in objective function to find the optimal cost of building frame systems. Genetic Algorithm is adopted to optimizer to find structural cost optimization. The proposed adapted to structural design of 3.5 stories example buildings with buildings frame systems. As a result, The proposed optimization method can be effectively adapted to cost optimization of building frame systems using high-strength steel members.

  • PDF