Browse > Article
http://dx.doi.org/10.1016/j.net.2015.02.002

INVESTIGATION OF ACTIVATED CARBON ADSORBENT ELECTRODE FOR ELECTROSORPTION-BASED URANIUM EXTRACTION FROM SEAWATER  

ISMAIL, AZNAN FAZLI (Department of Nuclear and Quantum Engineering (NQe), 291 Korea Advanced Institute of Science and Technology (KAIST))
YIM, MAN-SUNG (Department of Nuclear and Quantum Engineering (NQe), 291 Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
Nuclear Engineering and Technology / v.47, no.5, 2015 , pp. 579-587 More about this Journal
Abstract
To support the use of nuclear power as a sustainable electric energy generating technology, long-term supply of uranium is very important. The objective of this research is to investigate the use of new adsorbent material for cost effective uranium extraction from seawater. An activated carbon-based adsorbent material is developed and tested through an electrosorption technique in this research. Adsorption of uranium from seawater by activated carbon electrodes was investigated through electrosorption experiments up to 300 minutes by changing positive potentials from +0.2V to +0.8V (vs. Ag/AgCl). Uranium adsorption by the activated carbon electrode developed in this research reached up to 3.4 g-U/kg-adsorbent material, which is comparable with the performance of amidoxime-based adsorbent materials. Electrosorption of uranium ions from seawater was found to be most favorable at +0.4V (vs. Ag/AgCl). The cost of chemicals and materials in the present research was compared with that of the amidoxime-based approach as part of the engineering feasibility examination.
Keywords
Activated carbon electrode; Adsorbent cost; Electrosorption; Seawater; Uranium extraction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Schneider, H. Linder, Unconventional Uranium Resources and Production Costs, ANS Annual Meeting, June 15-19, 2014.
2 M. Tamada [Internet]. Current Status of Technology for Collection of Uranium from Seawater, Erice Seminar, 2009 [cited 2012 Aug 29]. Available from: http://wiki.ornl.gov/sites/nfrw/Shared%20Documents/Uranium%20Extraction%20Seawater/2009_Tamada%5B1%5D.pdf.
3 K. Saito, T. Miyauchi, Chemical forms of uranium in artificial seawater, Nucl. Sci. and Technol. 19 (1982) 145-150.   DOI
4 P.H. Gleich, Water in Crisis: a Guide to the World's Fresh Water Resources, Oxford University Press, 1993, pp. 142-143.
5 H. Sodaye, S. Nisan, C. Poletiko, S. Prabhakar, P.K. Tewari, Extraction of uranium from the concentrated brine rejected by integrated nuclear desalination plants, Desalination 235 (2009) 9-32.   DOI
6 R.V. Davies, J. Kennedy, R.W. McIlroy, R. Spence, Extraction of uranium from seawater, Nature 4950 (1964) 1110-1115.
7 A. Zhang, G. Uchiyama, T. Asakura, Dynamic-state adsorption and elution behaviour of uranium (VI) ions from seawater by a fibrous and porous adsorbent containing amidoxime chelating functional groups, Adsorpt. Sci. Technol. 21 (2003) 761-774.   DOI
8 S.H. Choi, M.S. Choi, Y.T. Park, K.P. Lee, H.D. Kang, Adsorption of uranium ions by resins with amidoxime and amidoxime/carboxyl group prepared by radiation-induced polymerization, Radiat. Phys. Chem. 67 (2003) 387-390.   DOI
9 N. Seko, M. Tamada, F. Yoshii, Current status of adsorbent for metal ions with radiation grafting and crosslinking techniques, Nucl. Instrum. Methods Phys. Res., Sect. A: Beam Interact Mater Atoms 236 (2005) 21-29.   DOI
10 T.L. Prasad, A.K. Saxena, P.K. Tewari, D. Sathiyamoorthy, An engineering scale study on radiation grafting of polymeric adsorbents for recovery of heavy metal ions from seawater, Nucl. Eng. Technol. 41 (2009) 1101-1108.   DOI
11 H. Yamashita, Y. Ozawa, F. Nakajima, T.Murata, The collection of uranium from seawater with hydrous metal oxide. IV. Physical properties and uranium adsorption of hydrous titanium(IV) oxide, Bull. Chem. Soc. Jpn. 53 (1980) 3050-3053.   DOI
12 G.D. Suh, J.H. Kim, K.S. Hea, Adsorption of uranium by hydrous titanium(IV) oxides, Korean Chem. Eng. Res. 28 (1990) 303-312.
13 S. Nakamura, S.Mori, H. Yoshimuta, Y. Ito, M. Kanno, Uranium adsorption properties of hydrous titanium oxide granulated with polyacrylonitrile, Sep. Sci. Technol. 23 (1988) 731-743.   DOI
14 M. Wazne, G.P. Korfiatis, X. Meng, Removal of Uranium from Water by Nanocrystalline Titanium Dioxide, Protection and Restoration of the Environment VII, Mykonos, Greece, 2004, pp. 1-9.
15 H. Yamashita, K. Fujita, F. Nakajima, Y. Ozawa, T. Murata, Extraction of uranium from seawater using magnetic adsorbents, Sep. Sci. Technol. 16 (1981) 987-998.   DOI
16 Y. Sun, S. Yang, G. Sheng, Z. Guo, X. Tan, J. Xu, X. Wang, Comparison of U(VI) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina, Sep. Purif. Technol. 83 (2012) 196-203.
17 E.A. Heide, K. Wagener, M. Paschke, M. Wald, Extraction of uranium from sea water by cultured algae, Naturwissenschaften 60 (1973) 431.
18 A. Nakajima, T. Sakaguchi, S. Honma, M. Aoyama, A. Kasai, Recovery and removal of uranium by conifer barks, Resour. Environ. Biotechnol. 2 (1999) 297-310.
19 K. Chauhan, G.S. Chauhan, Separation of uranyl ions on starch-based functional hydrogels: mechanism and kinetics, Sep. Sci. Technol. 46 (2011) 172-178.
20 J. Kim, M.Y. Kim, H.S. Kim, S.S. Hah, Binding of uranyl ion by a DNA aptamer attached to a solid support, Bioorg. Med. Chem. Lett. 21 (2011) 4020-4022.   DOI
21 J. Kim, H. Lee, J.W. Yeon, Y. Jung, J. Kim, Removal of uranium (VI) from aqueous solutions by nanoporous carbon and its chelating polymer composite, J. Radioanal. Nucl. Chem. 286 (2010) 129-133.   DOI
22 Y. Xu, J.W. Zondlo, H.O. Finklea, A. Brennsteiner, Electrosorption of uranium on carbon fibers as a means of environmental remediation, Fuel Process. Technol. 68 (2000) 189-208.   DOI
23 J. Gorka, R.T. Mayes, L. Baggetto, G.M. Veith, S. Dai, Sonochemical functionalization of mesoporous carbon for uranium extraction from seawater, J. Mater. Chem. A 1 (2013) 3016-3026.   DOI
24 A. Mellah, S. Chegrouche, M. Barkat, The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations, Colloid Interface Sci. 296 (2006) 434-441.   DOI
25 M. Caccin, F. Giacobbo, M. Da Ros, L. Besozzi, M. Mariani, Adsorption of uranium, cesium and strontium onto coconut shell activated carbon, J. Radioanal. Nucl. Chem. 279 (2013) 9-18.
26 M. Tamada, N. Seko, N. Kasai, T. Shimizu, Cost estimation of uranium recovery from seawater with system of braid type adsorbent, Trans. Atomic. Energ. Soc. Jpn. 5 (2006) 358-363.   DOI
27 C.D. Liang, S. Dai, Synthesis of mesoporous carbon materials via enhanced hydrogenbonding interaction, J. Am. Chem. Soc. 128 (2006) 5316-5317.   DOI
28 C.H. Jung, H.Y. Lee, J.K. Moon, H.J. Won, Y.G. Shul, Electrosorption of uranium ions on activated carbon fibers, J. Radioanal. Nucl. Chem. 287 (2011) 833-839.   DOI
29 G. Tian, J. Geng, Y. Jin, C. Wang, S. Li, Z. Chen, Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5, J. Hazard. Mater. 190 (2011) 442-450.   DOI
30 Y. Zhao, C. Liu, M. Feng, Z. Chen, S. Li, G. Tian, L. Wang, J. Huang, S. Li, Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon, J. Hazard. Mater. 176 (2010) 119-124.   DOI
31 A. Zhang, T. Asakura, G. Uchiyama, The adsorption mechanism of uranium (VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group, React. Funct. Polym. 57 (2003) 67-76.   DOI
32 J. Kim, C. Tsouris, R.T. Mayes, Y. Oyola, T. Saito, C.J. Janke, S. Dai, E. Schneider, D. Sachde, Recovery of uranium from seawater: a review of current status and future research needs, Sep. Sci. Technol. 48 (2012) 367-387.
33 J. Koresh, A. Soffer, Stereoselectivity in ion electroadsorption and in double-layer charging of molecular-sieving carbon electrodes, J. Electroanal. Chem. 147 (1983) 223-234.   DOI
34 K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, Wiley, New York, 1988.
35 G. Meinrath, Aquatic chemistry of uranium, Freib. On-line Geosci. 1 (1998).
36 J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, Capacitive deionization of NaCI and $NaNO_3$ solutions with carbon aerogel electrodes, J. Electrochem. Soc. 143 (1996) 159-169.   DOI
37 E. Schneider, D. Sachde, The cost of recovering uranium from seawater by a braided polymer adsorbent system, Sci. Glob. Secur. 21 (2013) 134-163.   DOI
38 R. Villalobos-Rodriguez, M.E. Montero-Cabreraa, H.E. Esparza-Ponce, E.F. Herrera-Peraza, M.L. Ballinas-Casarrubias, Uranium removal from water using cellulose triacetate membranes added with activated carbon, Appl. Radiat. Isot. 70 (2012) 872-881.   DOI
39 OECD-NEA-IAEA, Uranium 2011: Resources, Production and Demand, Paris, 2011, pp. 9-10.
40 F. Vernon, T. Shah, The extraction of uranium from seawater by poly(amidoxime)/poly(hydroxamic acid) resins and fibre, React. Polym., Ion Exch., Sorbents 1 (1983) 301-308.   DOI
41 L.S. Shannon, Master Degree Thesis: Removal of Uranium from Aqueous Wastes Using Electrically Charged Carbon Nanofibers, United States, West Virginia, 2000.
42 C.H. Hou, P. Taboada-Serrano, S. Yiacoumi, C. Tsouris, Electrosorption selectivity of Ions from mixtures of electrolytes inside nanopores, J. Chem. Phys. 129 (2008) 224703.   DOI