• Title/Summary/Keyword: Matching prior

Search Result 155, Processing Time 0.022 seconds

BAYESIAN TEST FOR THE EQUALITY OF THE MEANS AND VARIANCES OF THE TWO NORMAL POPULATIONS WITH VARIANCES RELATED TO THE MEANS USING NONINFORMATIVE PRIORS

  • Kim, Dal-Ho;Kang, Sang-Gil;Lee, Woo-Dong
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.3
    • /
    • pp.271-288
    • /
    • 2003
  • In this paper, when the variance of the normal distribution is related to the mean, we develop noninformative priors such as matching priors and reference priors. We prove that the second order matching prior matches alternative coverage probabilities up to the same order and also it is a HPD matching prior. It turns out that one-at-a-time reference prior satisfies a second order matching criterion. Then using these noninformative priors, we develop a Bayesian test procedure for the equality of the means and variances of two independent normal distributions using fractional Bayes factor. Some simulation study is performed, and a real data example is also provided.

Bayesian Analysis for Burr-Type X Strength-Stress Model

  • Kang, Sang-Gil;Ko, Jeong-Hwan;Lee, Woo-Dong
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.05a
    • /
    • pp.191-197
    • /
    • 1999
  • In this paper, we develop noninformative priors that are used for estimating the reliability of stress-strength system under the Burr-type X distribution. A class of priors is found by matching the coverage probabilities of one-sided Bayesian credible interval with the corresponding frequentist coverage probabilities. It turns out that the reference prior is a first order matching prior. The propriety of posterior under matching prior is provided. The frequentist coverage probabilities are given for small samples.

  • PDF

Noninformative Priors for the Ratio of the Failure Rates in Exponential Model

  • Cho, Jang-Sik;Baek, Sung-Uk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.217-226
    • /
    • 2002
  • In this paper, we derive noninformative priors for the ratio of failure rates in exponential model. A class of priors is found by matching the coverage probabilities of one-sided Baysian credible interval with the corresponding frequentist coverage probabilities. And we prove that the noninformative prior matches the alternative coverage probabilities and is a HPD matching prior up to the second order. Finally, we provide simulated freqentist coverage probabilities under the derived noninformative prior for small samples.

  • PDF

Bayesian Estimation for the Reliability of Stress-Strength Systems Using Noninformative Priors

  • Kim, Byung-Hwee
    • International Journal of Reliability and Applications
    • /
    • v.2 no.2
    • /
    • pp.117-130
    • /
    • 2001
  • Consider the problem of estimating the system reliability using noninformative priors when both stress and strength follow generalized gamma distributions. We first treat the orthogonal reparametrization and then, using this reparametrization, derive Jeffreys'prior, reference prior, and matching priors. We next provide the suffcient condition for propriety of posterior distributions under those noninformative priors. Finally, we provide and compare estimated values of the system reliability based on the simulated values of the parameter of interest in some special cases.

  • PDF

Noninformative Priors for the Ratio of Parameters in Inverse Gaussian Distribution (INVERSE GAUSSIAN분포의 모수비에 대한 무정보적 사전분포에 대한 연구)

  • 강상길;김달호;이우동
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • In this paper, when the observations are distributed as inverse gaussian, we developed the noninformative priors for ratio of the parameters of inverse gaussian distribution. We developed the first order matching prior and proved that the second order matching prior does not exist. It turns out that one-at-a-time reference prior satisfies a first order matching criterion. Some simulation study is performed.

Bayesian Analysis for the Difference of Exponential Means

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.135-144
    • /
    • 2005
  • In this paper, we develop the noninformative priors for the exponential models when the parameter of interest is the difference of two means. We develop the first and second order matching priors. We reveal that the second order matching priors do not exist. It turns out that Jeffreys' prior does not satisfy a first order matching criterion. The Bayesian credible intervals based on the first order matching meet the frequentist target coverage probabilities much better than the frequentist intervals of Jeffreys' prior.

  • PDF

Bayesian Analysis for Burr-Type XStrength-Stress Model

  • Kang, Sang-gil;Ko, Jeong-Hwan;Lee, Woo-Dong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.4
    • /
    • pp.47-52
    • /
    • 1999
  • In this paper, we develop noninformative priors that are used for estimating the reliability of stress-strength system under the Burr-type X distribution. A class of priors is found by matching the coverage probabilities of one-sided Bayesian credible interval with the corresponding frequentist coverage probabilities. It turns out that the reference prior is a first order matching prior. The propriety of posterior under matching prior is provided. The frequentist coverage probabilities are given for small samples.

  • PDF

Temporal matching prior network for vehicle license plate detection and recognition in videos

  • Yoo, Seok Bong;Han, Mikyong
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.411-419
    • /
    • 2020
  • In real-world intelligent transportation systems, accuracy in vehicle license plate detection and recognition is considered quite critical. Many algorithms have been proposed for still images, but their accuracy on actual videos is not satisfactory. This stems from several problematic conditions in videos, such as vehicle motion blur, variety in viewpoints, outliers, and the lack of publicly available video datasets. In this study, we focus on these challenges and propose a license plate detection and recognition scheme for videos based on a temporal matching prior network. Specifically, to improve the robustness of detection and recognition accuracy in the presence of motion blur and outliers, forward and bidirectional matching priors between consecutive frames are properly combined with layer structures specifically designed for plate detection. We also built our own video dataset for the deep training of the proposed network. During network training, we perform data augmentation based on image rotation to increase robustness regarding the various viewpoints in videos.

Noninformative Priors for Stress-Strength System in the Burr-Type X Model

  • Kim, Dal-Ho;Kang, Sang-Gil;Cho, Jang-Sik
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.17-27
    • /
    • 2000
  • In this paper, we develop noninformative priors that are used for estimating the reliability of stress-strength system under the Burr-type X model. A class of priors is found by matching the coverage probabilities of one-sided Bayesian credible interval with the corresponding frequentist coverage probabilities. It turns out that the reference prior as well as the Jeffreys prior are the second order matching prior. The propriety of posterior under the noninformative priors is proved. The frequentist coverage probabilities are investigated for samll samples via simulation study.

  • PDF

Noninformative priors for common scale parameter in the regular Pareto distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Kim, Yong-Ku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.353-363
    • /
    • 2012
  • In this paper, we introduce the noninformative priors such as the matching priors and the reference priors for the common scale parameter in the Pareto distributions. It turns out that the posterior distribution under the reference priors is not proper, and Jeffreys' prior is not a matching prior. It is shown that the proposed first order prior matches the target coverage probabilities in a frequentist sense through simulation study.