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Abstract. Consider the problem of estimating the system reliability
using noninformative priors when both stress and strength follow gener-
alized gamma distributions. We first treat the orthogonal reparametriza-
tion and then, using this reparametrization, derive Jeffreys’ prior, refer-
ence prior, and matching priors. We next provide the sufficient condition
for propriety of posterior distributions under those noninformative pri-
ors. Finally, we provide and compare estimated values of the system
reliability based on the simulated values of the parameter of interest in
some special cases.
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1. INTRODUCTION

Suppose a system, made up of k£ identical components, functions if r or more
of the k components simultaneously operate. We assume that the strengths of
these components, Y7, -, Yy, are identically and independently distributed (i.i.d.)
random variables with a common commulative distribution function (c.d.f.), G(y).
We further suppose that this system is subject to a stress, say X, which is a random
variable with c.d.f., F(z). The system operates satisfactorily if » or more of the k
components have strength large then the stress, X, and accordingly, we define the
system reliability , R, say , as the probability that at least r of ¥7,---,Y; exceed
X , so that

k

R, = Z (f) [_o:o[l - G(:c)]%[G(:v)]k—’dF(x) (1.1)

i=r
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The problem of making inference about (1.1) has been discussed, using the classi-
cal frequentist theory approach, in various guises by Birnbaum(1956), Bhattacharyya
and Johnson(1974), Simonoff et al.(1986), and Reiser and Guttman(1989), among
others. A great deal of this work have focused on producing maximum likelihood
estimatous, uniformly minimum variance unbiased estimators, and one-sided confi-
dence intervals for R, in various situations. In contrast, there is relatively little
on a Bayesian approach to this problem. Some pertient references are Draper and
Guttman(1978), Gaithwaite and Dickey(1988), Guttman et al.(1990) , and Guttman
and Papandonatos(1997).

The present paper focuses exclusively on Bayesian inference for R, ; when F(x)
and G(y) are c.d.f.’s of generalized gamma distributions GG(n1, B, p) and GG (72, B, p)
respectively, with corresponding density functions

—(=\B8
£@) = Dy a1 25 0

I'(p)
and
B —p pp-1 (L)
P — e ‘2 s > 0
9(y) o™ Y Yy

with 1 > 0,72 >0, 8> 0, and p > 0. In this situation, the system reliability
R, ; in (1.1) reduces, after some manipulation, to

k

Rrp=Y (’Z) /0 "I = I(p, ) [I(p, u)]k_il_‘—(li)j&pup_le"ol“du, (1.2)

where 6; = (%)ﬁ and I(p,u) = [ ﬁvl’_le‘”dv :

In the generalized gamma distribution GG(n, B,p), 7,83, and p are , respectively,
called the scale parameter, the shape parameter, and the index parameter. This
distribution includes many interesting distributions as special cases : exponential
distribution (p = B = 1), Raleigh distribution (p = 1,8 = 2),Weibull distribution
(p=1), Maxwell distribution (p = %—, B = 2), half-normal distribution(p = %, g =2)
and gamma distribution (8 = 1).

In this paper we only consider the case when p is known. Since R, in (1.2)
depends only on 6;, the emphasis is on noninformative priors for ;.

The most frequently used noninformative prior is Jeffreys’(1961) prior, which is
proportional to the positive square root of the determinant of the Fisher information
matrix. In spite of its success in one-parameter problems, Jeffreys’ prior frequently
runs into serious difficulties in the presence of nuisance parameter. As an alterna-
tive, we use the method of Peers(1965) to find priors which require the frequentist
coverage probability of the posterior region of a real-values parametric function to
match the nominal level with a remainder of O(n™!). Tibshirani(1989) reconsidered
the case when the real-valued parameter is orthogonal to the nuisance parameter
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vector in the sense of Cox and Reid(1987). These priors, as usually referred to as
matching priors, were further studied in Datta and Ghosh(1995).

On the other hand, Berger and Bernardo(1989,1992), and Datta and Ghosh(1995)
extended Bernardo’s(1979) reference-prior approach, giving a general algorithm to
derive a reference prior by splitting the parameters into several groups according
to their order of inferential importance. This approach is very successful in vari-
ous practical problems. For a list of recent reviews of various approaches to the
development of noninformative priors, we refer to Kass and Wasserman(1996).

In the case of & = 1, Thompson and Basu(1993) derived reference prior for R; 1
when the stress and strength are both exponentially distributed. It turns out that
in such situations. The reference priors agree with Jeffreys’ prior. Recently, when
k = 1, Sun et al.(1998) derived matching priors as well as reference priors for R;
when both stress and strength follow Weibull distribution.

In this paper we derive matching priors as well as reference priors for §; and
consider the problem of estimating R, j in generalized gamma stress-strength models
when p is known. Section 2 treats the orthogonal reparameterization from (11,72, 5)
to (01, 02, 05) when 0; is the parameter of interest and (62, 83) is a nuisance parameter
vector. In Section 3, we derive, using this orthogonal reparameterization, Jeffreys’
prior, reference prior , and matching priors when 8; is the parameter of interest. The
sufficient condition for propriety of posterior distributions of (81, 82, §3) and marginal
posterior densities of #; under these priors are given in Section 4. In Section 5, we
provide and compare estimated values of R, based on the simulated values of 6,
by Gibbs sampler for several pairs of k and r whenp=1.

2. FISHER INFORMATION MATRICES

2.1 Original Parametrization

Suppose that Xi,...,X,, arei.i.d. as the generalized gamma distribution,
GG(n1,B,p) and independently, Yi,---,Y, are i.i.d. as GG(n2, B3, p).

Then the likelihood function of (n;, 792, 8) is
)Pﬁ—l

m
Liny,m, Blz,y) = B™[0@)] 00 (T 2 [T vy
=1 j=1

DDA C 3L DHNC L (2.1)

n

and the log-likelihood function of (1,79, 8) is

1(7)1;772, ,BILQ) = lOQL(77177727,3|§7Q)
o< (m + n)logB — mpBlogm — npBlogn,

m

F @8- 1) logai + 3 logyy) - 3 ()P - 3 (P

i=1 j=1 =1 N j=1 "2
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Lemma 2.1. The Fisher information matrix for (7,72, 3) is

mpp? 0 _mm
n \ mI(p)
Lim,m,f)=| 0 = ~ : (2.2)

n m-+n L_
n1F(p) 7)21"(111) B 1+ 1“(;)

where v; = [°(logz)izPe~?dz,i = 1,2.
Proof. The result easily follows from the following identities :

0%l _ mp,B m—cﬂﬁ_
8—77—%— - "71 (ﬁ+ )1_1 "]1ﬂ+2’
L
dmonz
&°l 1 & i\P i
moB ——+—X;[( ) (x_l) l"g(%)]’
?l np,B
om — n ﬁ+2’
8% 1> .\ B \ B .
2 - ———z & o)
621 7 1 B i n -\ B ,
o = a2 () a3 - 32 () wea ()

and
EXP) = pmf,  EYP) =pn,
E(XflogX:) = pmP(logm) +

,Brl( ) m ﬁ’Yl )

E(Y;flogY;) = pnaP(lognz) + ﬁI‘( )nzﬂfn,

E(X:f(logX:)?) = pmP(logm)® +

1
ﬁ[‘(p) 771'3(109771)71 + Wmﬂ’h,

E(Y;%(logY;)?) = pno”(logm)® +

2 8 _1 s
()™ (logna)m + T ™

2.2 Orthogonal Reparametrization

Consider the following transformation from (71,72, 8) to (61, ¢2, ¢2) :

(%)5 — 91,7]1 = ¢1 = ¢1(01,92,03),ﬁ = ¢2 = ¢1(01,92,93)'
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Then the Fisher information matrix for (61, ¢1, ¢2) becomes, after some calculations,

?0191 ?91¢1 ?01¢2
L(61,¢1,¢2) = Y100 Yo e | (2.3)
19201 Y2y oo

where
Z.19101 = npgl—zi
. _ npge .
Yy = 6101 = 14161
o _ _npllogh)  nm iy,
a $200 @T(p)or O
. _ (m+n)péd
thr9p1 T T’
; _ _npllogh) (m+nmm _.
‘f’l ¢2 d)l ¢1F(p) ¢2¢1 ?
and
: np(loghi)  2nylogh m+n 72
7 = + + 1+ .
#292 2 #3T(p) 7 i)

Following Cox Reid’s(1987) method to the parameter orthogonalization, we have

2
. O¢r )
Zz¢r¢s——— = —19,64s) s=1,2,
= 06

that is, from (2.3) ,

(m +n)pd3 O¢n [(m +n)n  nploghy ] O¢2 _ npgo

¢ 96 L 4il(p) ¢ 190, b,

and

B [np(logﬁl) (m+n)m ] 9 [np(log01)2 N 2nvyilogby
1 é:1T(p) 106, b3 ¢35 (p)
m + mop g2 )] 9¢a _ np(logbs) 4+

#3 L(p)’) 06 $26h ¢2L(p)61”

After some manipulation, we get

+

1 (9051 1 . l[mn'yllogﬁl
61

- T'(p)

& 00, az (02, 05 ) [mnp(loghy )2 + (mm)zv*]g - (mm)n’r*]

and
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1 0¢ _ mnp(logh, )67
¢2 00, mnp(logh)? + (m +n)2y,’

(2.4)

72
where'y*=1+f7(—zﬁ—m.

Then the general solutions of (2.4) with respect to (¢1, ¢2) become

1 -3 _1
i a0, 60)0; IO matogn s
= , 4

and

$2 = az(02, 93)\/mnp(50991)2 + (m + n)? .. (2.5)

Now, choosung a;(02,65) =603 and a32(02,63) = 05 in (2.5) and using the inverse
transformation

1
m=¢1,m =02 ¢1,08 = ¢,

we have, from (2.5) ,

m = 9291_51%%[mnp(10991)2+(m+n)2%]—% _e-—p—lf(%)%[mnp(logﬂl)z-&‘(m—i-n)z%]_%
772 — 929{;:1‘ 9_13-[mnp(10901)2+(m+n)27*]—‘% . e—;—;—%p—)é[mnp(l0901)2+(m+n)2%]—%
and
B = 3[mnp(logh;)? + (m + n)zfy*]%. (2.6)
Lemma 2.2. The Fisher information matrix for (8;,62,63) is
i1 O
I5(61,62,05) = 0 42 O |, (2.7)
0 0 133
where ) s ) ) )
111 = mn(m+ n)py.b; “[mnp(logh)” + (m +n)*v.)™,
i = (m+mn)pdy263[mnp(logh)” + (m +n)’y],
and
. 1 _
i33 = m[mnp(logﬁl)2 + (m+ n)?”y*]03 2,

Proof. The result follows, after lengthy calculations using (2.6), from

I3(61,62,05) = JTL,(61,62,05)J,
where I(60y,05,0s) is I1(n1, 72, 8) in (2.2) expressed in terms of (61, 62, 63) and
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J=(J;) ,1=123,7=1,23

om
061

1
0 i 85 (mnp(logh ) +(m+n)2y.] " -1
1

mnp(iog0)? + (m+ w1~} { T ogty ~ m + mjm. |

_1
e ol an_ Imnp(logh:)2+(m+n)2v.) " 2
?

om -9 ~ sk 55 (mnp(logh)? +(m+n)?y.]” 2 _e—;%(lm91—3[mnp(logal)2+(m+n)2’y,.]“%
392 1 ’
3721 g [mnp(logh )2+ (m+n)2m]"i’

0 m+n 3 N .02
803 92 93

: [mnp(10991)2 + (m+ n)2fy*]‘% . {

n 94!
log#
mtn 0t pI(p) }
e ;TI’Y"_%;T)_ 9_13‘ [mnp(log91)2+(m+n)2’y*]_ %
o
0b;

1
3 o5 [mnp(logy)? +(m4n)2y.) " 2 -1 .
01 M 02 . 03

3

- [mnp(loghy)® + (m + n)?y.] 72 - {m(m + 1)y + %g—llog&}

_1
. 6‘4‘,,1?(,,)b%[mnp(50991)2+(m+n)2'r*] 3
7

_g%z_ L g mnplooh Pl E o nplloqd, o (]
_g_z_z_ _ g lmn(ogh ) (mny. : 6y 05

- [mnp(logh;)? + (m + n)?y.] "2 - {p;&)) - mTZ nlogé)l}

. o~ s mnpllogh ) mampta)E

geﬁ] = mnp(log )07 '0; - [mnp(logh)® + (m + n)er*]_é,
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96

= [mnp(logh)® + (m +n)?y.)3.
003

J3z =

This implies that 8; , the parameter of interest, is orthogonal to the nuisance
parameter vector (62,03) in the sence of Cox and Reid(1987).

3. NONINFORMATIVE PRIORS

In this section, we provide, using (2.7), three types of noninformative priors ;
Jeffreys’ prior, reference priors, and matching priors.
Theorem 3.1. The Jeffreys’ prior for (6,02,03) is

D=

m7(61,02,03) o | I3(61,62,05) |
o 07205 [mnp(loghr)? + (m + ) ]2, (3.1)

From Datta and Ghosh(1995), we have the reference prior for (61,62,03) in the
following when 6, is the parameter of interest and (2, 63) is the nuisance parameter
vector.

Theorem 3.2. The reference prior for 6, is given by

wr(01,09,63) 01‘102"1[mnp(l0991)2 + (m +n)?y,] 2.
Proof. The Fisher information matrix I3(6;,62,83) is

13(61,92,93) = block diagonal (h1(91,92,93) ; H2(91,92,93)),

N

(3.2)

where h1(61,02,03) = i1; and Ha(61,02,63) = ( %2 i; )

Then h1(91,02,93) = h11(01)h12(92,03) and [H2(91,02,93)! = h21(02,03)h22(91)
with h11(61) =mn(m + n)p7*6f2-[mnp(log91)2 + (m + n)2y,] 7L, h12(62,63) =1,
ho1(02,63) = ph5 2, and hoz(61) = [mnp(logh)? + (m + n)?v.]?. Now, take the se-
quence {{;} of retangular compact subsets of Q = {(61,62,03) | 0 < 61,0,,63 < oo}
where Q; = A% x A} with 4] = [%,z] , an increasing compact sets for 8; , and

%,i] X [%,z’], an increasing compact sets for (62,63). Then we have , from

Datta and Ghosh(1995), the reference prior for (61,02, 6s),

e
9 =

wr(01,02,03) = [h11(61)ha1(62,05)]?
o 67105 mnp(log81)? + (m + n)®v.] 2.

=

Also, following Tibshirani(1989), we have matching priors for 6;, the parameter
of interest. as follows :
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Theorem 3.3. The matching priors for §; are given by

1
m(01,02,03) o ifyg(62,0s)
o 07 [mnp(logh)? + (m +n)’y.] "2g(62,63)  (3.3)
for any positive differentiable function g.
Note that Jeffreys’ prior is not a matching prior, but the reference prior is a

matching prior with g(s,t) = < in (3.3). An interesting class of matching priors can
be obtained by taking g(s, t) =571 for —00 < b < 00, for which (3.3) becomes

7 (01, 02,03) o 071605105 [mnp(logh)? + (m + n)2’y*]_%. (3.4)

4. POSTERIOR DISTRIBUTIONS

The posterior density of (8;,82,63) under a prior 7 is
71'(91, 92, 93 | z, y_) 0.8 L(01, 02, 93 | z, g)T((Ol, 92, 93), (41)

where L(6y,62,03 | z,y) is the likelihood function L(n1, 72,8 | Z,y) in (2.1) expressed
in terms of

= e} NI

05 = ﬁ[mnp(ﬁwggf)? + (m 4 n)%]

_1
z.

We first provide the sufficient condition under which the posteriors are proper
under 7y in (3.1), 7g in (3.2), and mps for b < 2 in (3.4). Note that for almost all
samples from a continuous distribution, observations are distinct.

Theorem 4.1. All the posteriors under 7y, g and mps for b < 2 in (3.4) are proper
if m +n > 3. Proof. We only prove the result for 7)s. Using the transformation

01 = Ui,
n 1 1
AL 4
02 — u{n+n ug ué‘i& epl(p) u3 ,
_1
0; = U3[mnp(logu1)2 + (m+n)%y,]72

n_ 11l 1 4 1

and Jacobian J = u{"*" 3 us®  erT® w3 ug mnp(loguy)? + (m + ”)2’)’*]—%,

o o0 o0
/0 /0 /0 L(61,02,03 | z,y)mar (61, 02,03)d01d6>dbs

00 poo  foo m n
:/0 /0 /(; u§n+n[r( (m+n) ——np —m+n)p H H pu3 1



126 Bayesian Estimation for the Reliability of Stress-Strength Systems

P rIODMRE S e D ]ufluglu"b‘l[mnp logu1)2+(m+n)2'y*]g“1du1duzdu;,»

:/Ooo/om[F(p)]—(m+n)p[(m+n) plul™! b1y, qus"‘zyu“‘] ~(manp

=1 j=1

n
([ =i TT w3)™*~ fmmp(logur)? + (m + n)* 3]~ dusduy
=1 j=1

m n n
__/ [F(p (m+n) | 1—\ m+n H H pus 1 m+n b— 1 nge,)—mp(z y;ts)—np
=1 j=1 i=1 j=1

( /0 V(L A+ 0) TP [ zogz—%;v)%(mm) 5 dz)du:s- (4.2)

=1 "¢

Now, it can be easily shown that for 6 < 2,

Y19 b
= [mnp( log—]——xi + logv)? + (m 4 n)?y,]z 7!
=1 "3

has a maximum value [(m + n)2fy*] 2l at v = %J_LT‘ Hence

(42) < [<m+n ﬁ-lm )" <m+")r<mp>r< np)

/ HEZHyJ puz—1 m+n b— 1 Zmus mp Zy;ts)—npdug_ (43)
=1 j=1 = j=1

Since there exist z; and y such that =z < maz{zi,z2,---,z,} and
Y < maz{y1,y2,---,Yn}, Wwe have

rhs of (4.3) < [(m+n ] 1[I‘( )]~ (m+")I‘ (mp)T(np) H%H@/J

. z pus
/ ( k Yl ) L
0 max{xl,---,xm} max{ylv "73/71}

= [(m + n) ) D)) ([ o Hyj
=1 7j=1

0
/ ug“""_b_le_ug’(_plogm"{xl,"'vzm}'maz{yh"'vyn})du;;
0

= [(m +n)*1 ]~ D@ T (mp)T (rp) ([ s [] )™

Tk
maz{zi, -, Tm}

Y ]—(m+n—b)
max{yla' Ty yn}l

'I‘(m+n~bi— plog — plog

< 0.

The remaining cases can be similarly verified. Hence the proof is complete.
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Next, we provide the marginal posterior densities of 8; under the priors n;, 7p ,
and mys for b < 2 in (3.4). The proofs are omitted.

Theorem 4.2. Under the priors 7y, mg and 7ps for b < 2 in (3.4), the marginal

posterior densities of §; = (g%)ﬂ are, respectively, given by

x
my(61lz, y) o 9;”_1/ ug " h(0y, uslz, y)dus,
y A y
oo
mr(iley) o 677 mnp(loghy)? + (m+n)) "t [T (s, usla, p)dus,
y . y

and
x
ma (@12, y) o 677 fmnp(loghyH(man) 1.1 ug A1, sl y)dus,
E) o £

where

m n

Otz = ([ [Loi0, S5+ S
i=1 j=1

i=1 j=1

Clearly, the normalizing constant for the marginal posterior densities of 8; require
two dimensional integration. Once we have the marginal posterior densities of 6,
we can compute posterior expected values of R, under the priors w7, mg and mpy
for b < 2 in (3.4) . This will not given here.

5. SIMULATION RESULTS

In this section, we investigate how the matching prior 7ps for b = 1 in (3.4)
compare with Jeffreys’ prior 7y and the reference prior g in finding the estimated
values for R, ; in (1,1) when p is known, particularly p = 1. In this case, R, reduces
to

k .
2
R, i|=|T i (5.1)

B . . .
where 6; = (g’%) . The results of Section 4 lead easily to inferences about R,
without explicit knowledge of the posteriors of R, x due to the fact that R, in (5.1)

is a monotone increasing function of 6,.

First, Table 1 gives the simulated values of #; by Gibbs Sampler(100 iterations,
100 samples) using the full posteriors of (61, 63, 63) in (4.1) under the noninformative
priors 7y, g, and was for b =1 in (3.4) when m =n = 3.
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Table 1. True values and simulated values of 8 = (%)ﬁ by Gibbs sampler under
priors 7y, mg, and mps for b =1 in (3.4)

B lm|[m]|6=(E)F o7 i oY
05213 1.22474 1.47260 | 1.40029 | 1.1888
3| 2 0.81649 0.87561 { 0.84004 | 0.81705
1 213 1.50000 1.84315 | 1.66416 | 1.53717
132 0.66667 | 0.50983 | 0.67095 | 0.68487
2 2|3 2.25000 2.30486 | 2.27416 | 2.21340
312 0.44435 0.49561 | 0.46731 | 0.43330

Next, Table 2 provides the corresponding estimated values of R,y in (5.1) for
k=3 and r = 1,2, 3 substituting the 8, values in Table 1 into (5.1).

Table 2. True values and the corresponding estimated values of R, 3, r = 1,2, 3,
based on the 8; values in Table 1

ri B Im|m| RBg R{; R{s Ry
105 2 3 | 0.80204 | 0.84376 | 0.83293 | 0.79479
312 |0.69271 | 0.71296 | 0.70101 | 0.69291
1 2 3 | 0.84762 | 0.88662 | 0.86822 | 0.85265
3| 2 |0.63182 | 0.54888 | 0.63378 | 0.64005
2 2 3 10.91726 | 0.92050 | 0.91871 } 0.91499
3 2 | 0.50659 | 0.54013 | 0.52202 | 0.49892

|1 B |m|m| Ras Ry, Ry R
210571 2 3 10.55960 | 0.61369 | 0.59899 | 0.55083
3 2 | 0.44181 | 0.46163 | 0.44984 | 0.44201
1 2 1 3 10.61905 | 0.67764 | 0.64892 | 0.62614
3| 2 |0.38637 | 0.31888 | 0.38806 | 0.39354
2 213 1073109 | 0.73727 | 0.73384 | 0.72685
3 | 2 |0.28734 | 0.31222 | 0.29865 | 0.28180

r{ B {m|mn| Rss R{3 R’ R
3105 2 3 |1 0.28990 | 0.32925 | 0.31823 | 0.28382
3 2 10.21394 | 0.22593 | 0.21876 | 0.21405
1 2 3 1 0.33333 | 0.38057 | 0.35680 | 0.33880
3 2 1 0.18182 | 0.14526 | 0.18277 | 0.18586
2 2 3 | 0.42857 | 0.43448 | 0.43119 | 0.42456
3 2 1 0.12901 | 0.14178 | 0.13478 | 0.12621

For most of the cases presented in Table 2, we see that the matching prior mjs
for b =1 in (3.4) performs better than the Jeffreys’ prior in (3.1) and the reference
prior 7g in (3.2) in estimating the system reliability R, for k=3 and r = 1,2, 3.
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