• Title/Summary/Keyword: Mastrovito Multiplication

Search Result 11, Processing Time 0.022 seconds

A Finite field multiplying unit using Mastrovito's arhitecture

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.925-927
    • /
    • 2005
  • The study is about a finite field multiplying unit, which performs a calculation t-times as fast as the Mastrovito's multiplier architecture, suggesting and using the 2-times faster multiplier architecture. Former studies on finite field multiplication architecture includes the serial multiplication architecture, the array multiplication architecture, and the hybrid finite field multiplication architecture. Mastrovito's serial multiplication architecture has been regarded as the basic architecture for the finite field multiplication, and in order to exploit parallelism, as much resources were expensed to get as much speed in the finite field array multipliers. The array multiplication architecture has weakness in terms of area/performance ratio. In 1999, Parr has proposed the hybrid multipcliation architecture adopting benefits from both architectures. In the hybrid multiplication architecture, the main hardware frame is based on the Mastrovito's serial multiplication architecture with smaller 2-dimensional array multipliers as processing elements, so that its calculation speed is fairly fast costing intermediate resources. However, as the order of the finite field, complex integers instead of prime integers should be used, which means it cannot be used in the high-security applications. In this paper, we propose a different approach to devise a finite field multiplication architecture using Mastrovito's concepts.

  • PDF

3X Serial GF($2^m$) Multiplier Architecture on Polynomial Basis Finite Field (Polynomial basis 방식의 3배속 직렬 유한체 곱셈기)

  • Moon, Sang-Ook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.328-332
    • /
    • 2006
  • Efficient finite field operation in the elliptic curve (EC) public key cryptography algorithm, which attracts much of latest issues in the applications in information security, is very important. Traditional serial finite multipliers root from Mastrovito's serial multiplication architecture. In this paper, we adopt the polynomial basis and propose a new finite field multiplier, inducing numerical expressions which can be applied to exhibit 3 times as much performance as the Mastrovito's. We described the proposed multiplier with HDL to verify and evaluate as a proper hardware IP. HDL-implemented serial GF (Galois field) multiplier showed 3 times as fast speed as the traditional serial multiplier's adding only partial-sum block in the hardware. So far, there have been grossly 3 types of studies on GF($2^m$) multiplier architecture, such as serial multiplication, array multiplication, and hybrid multiplication. In this paper, we propose a novel approach on developing serial multiplier architecture based on Mastrovito's, by modifying the numerical formula of the polynomial-basis serial multiplication. The proposed multiplier architecture was described and implemented in HDL so that the novel architecture was simulated and verified in the level of hardware as well as software.

Fast GF(2m) Multiplier Architecture Based on Common Factor Post-Processing Method (공통인수 후처리 방식에 기반한 고속 유한체 곱셈기)

  • 문상국
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1188-1193
    • /
    • 2004
  • So far, there have been grossly 3 types of studies on GF(2m) multiplier architecture, such as serial multiplication, array multiplication, and hybrid multiplication. Serial multiplication method was first suggested by Mastrovito (1), to be known as the basic CF(2m) multiplication architecture, and this method was adopted in the array multiplier (2), consuming m times as much resource in parallel to extract m times of speed. In 1999, Paar studied further to get the benefit of both architecture, presenting the hybrid multiplication architecture (3). However, the hybrid architecture has defect that only complex ordo. of finite field should be used. In this paper, we propose a novel approach on developing serial multiplier architecture based on Mastrovito's, by modifying the numerical formula of the polynomial-basis serial multiplication. The proposed multiplier architecture was described and implemented in HDL so that the novel architecture was simulated and verified in the level of hardware as well as software. The implemented GF(2m) multiplier shows t times as fast as the traditional one, if we modularized the numerical expression by t number of parts.

3X Serial GF(2$^m$) Multiplier on Polynomial Basis

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.928-930
    • /
    • 2005
  • With an increasing importance of the information security issues, the efficienct calculation process in terms of finite field level is becoming more important in the Elliptic curve cryptosystems. Serial multiplication architectures are based on the Mastrovito's serial multiplier structure. In this paper, we manipulate the numerical expressions so that we could suggest a 3-times as fast as (3x) the Mastrovito's multiplier using the polynomial basis. The architecture was implemented with HDL, to be evaluated and verified with EDA tools. The implemented 3x GF (Galois Field) multiplier showed 3 times calculation speed as fast as the Mastrovito's, only with the additional partial-sum generation processing unit.

  • PDF

3X Serial GF(2m) Multiplier on Polynomial Basis Finite Field (Polynomial basis 방식의 3배속 직렬 유한체 곱셈기)

  • 문상국
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.255-258
    • /
    • 2004
  • Efficient finite field operation in the elliptic curve (EC) public key cryptography algorithm, which attracts much of latest issues in the applications in information security, is very important. Traditional serial finite multipliers root from Mastrovito's serial multiplication architecture. In this paper, we adopt the polynomial basis and propose a new finite field multiplier, inducing numerical expressions which can be applied to exhibit 3 times as much performance as the Mastrovito's. We described the proposed multiplier with HDL to verify and evaluate as a proper hardware IP. HDL-implemented serial GF (Galois field) multiplier showed 3 times as fast speed as the traditional serial multiplier's adding only Partial-sum block in the hardware.

  • PDF

Design of an Efficient Bit-Parallel Multiplier using Trinomials (삼항 다항식을 이용한 효율적인 비트-병렬 구조의 곱셈기)

  • 정석원;이선옥;김창한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.5
    • /
    • pp.179-187
    • /
    • 2003
  • Recently efficient implementation of finite field operation has received a lot of attention. Among the GF($2^m$) arithmetic operations, multiplication process is the most basic and a critical operation that determines speed-up hardware. We propose a hardware architecture using Mastrovito method to reduce processing time. Existing Mastrovito multipliers using the special generating trinomial p($\chi$)=$x^m$+$x^n$+1 require $m^2$-1 XOR gates and $m^2$ AND gates. The proposed multiplier needs $m^2$ AND gates and $m^2$+($n^2$-3n)/2 XOR gates that depend on the intermediate term xn. Time complexity of existing multipliers is $T_A$+( (m-2)/(m-n) +1+ log$_2$(m) ) $T_X$ and that of proposed method is $T_X$+(1+ log$_2$(m-1)+ n/2 ) )$T_X$. The proposed architecture is efficient for the extension degree m suggested as standards: SEC2, ANSI X9.63. In average, XOR space complexity is increased to 1.18% but time complexity is reduced 9.036%.

Low Space Complexity Bit Parallel Multiplier For Irreducible Trinomial over GF($2^n$) (삼항 기약다항식을 이용한 GF($2^n$)의 효율적인 저면적 비트-병렬 곱셈기)

  • Cho, Young-In;Chang, Nam-Su;Kim, Chang-Han;Hong, Seok-Hie
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.29-40
    • /
    • 2008
  • The efficient hardware design of finite field multiplication is an very important research topic for and efficient $f(x)=x^n+x^k+1$ implementation of cryptosystem based on arithmetic in finite field GF($2^n$). We used special generating trinomial to construct a bit-parallel multiplier over finite field with low space complexity. To reduce processing time, The hardware architecture of proposed multiplier is similar with existing Mastrovito multiplier. The complexity of proposed multiplier is depend on the degree of intermediate term $x^k$ and the space complexity of the new multiplier is $2k^2-2k+1$ lower than existing multiplier's. The time complexity of the proposed multiplier is equal to that of existing multiplier or increased to $1T_X(10%{\sim}12.5%$) but space complexity is reduced to maximum 25%.

A Parallel Multiplier By Mutidigit Numbers Over GF($P^{nm}$) (GF($P^{nm}$)상의 다항식 분할에 의한 병렬 승산기 설계)

  • 오진영;윤병희나기수김흥수
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.771-774
    • /
    • 1998
  • In this paper proposes a new bit-parallel structure for a multiplier over GF((Pn)m), with k-nm. Mastrovito Multiplier, Karatsuba-ofman algorithm are applied to the multiplication of polynomials over GF(2n). This operation has a complexity of order O(k log p3) under certain constrains regardig k. A complete set of primitive field polynomials for composite fields is provided which perform modulo reduction with low complexity. As a result, multiplier for fields GF(Pk) with low gate counts and low delays are constructed. The architectures are highly modular and thus well suited for VLSI implementation.

  • PDF

A Study on Irreducible Polynomial for Construction of Parallel Multiplier Over GF(q$^{n}$ ) (GF($q^n$)상의 병렬 승산기 설계를 위한 기약다항식에 관한 연구)

  • 오진영;김상완;황종학;박승용;김홍수
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.741-744
    • /
    • 1999
  • In this paper, We represent a low complexity of parallel canonical basis multiplier for GF( q$^{n}$ ), ( q> 2). The Mastrovito multiplier is investigated and applied to multiplication in GF(q$^{n}$ ), GF(q$^{n}$ ) is different with GF(2$^{n}$ ), when MVL is applied to finite field. If q is larger than 2, inverse should be considered. Optimized irreducible polynomial can reduce number of operation. In this paper we describe a method for choosing optimized irreducible polynomial and modularizing recursive polynomial operation. A optimized irreducible polynomial is provided which perform modulo reduction with low complexity. As a result, multiplier for fields GF(q$^{n}$ ) with low gate counts. and low delays are constructed. The architectures are highly modular and thus well suited for VLSI implementation.

  • PDF

A Design of Multiplier Over $GF(2^m)$ using the Irreducible Trinomial ($GF(2^m)$의 기약 3 항식을 이용한 승산기 설계)

  • Hwang, Jong-Hak;Sim, Jai-Hwan;Choi, Jai-Sock;Kim, Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • The multiplication algorithm using the primitive irreducible trinomial $x^m+x+1$ over $GF(2^m)$ was proposed by Mastrovito. The multiplier proposed in this paper consisted of the multiplicative operation unit, the primitive irreducible operation unit and mod operation unit. Among three units mentioned above, the Primitive irreducible operation was modified to primitive irreducible trinomial $x^m+x+1$ that satisfies the range of 1$x^m,{\cdots},x^{2m-2}\;to\;x^{m-1},{\cdots},x^0$ is reduced. In this paper, the primitive irreducible polynomial was reduced to the primitive irreducible trinomial proposed. As a result of this reduction, the primitive irreducible trinomial reduced the size of circuit. In addition, the proposed design of multiplier was suitable for VLSI implementation because the circuit became regular and modular in structure, and required simple control signal.

  • PDF