• Title/Summary/Keyword: Mass loss rate

Search Result 398, Processing Time 0.027 seconds

The Erosion of Reinforced Concrete Walls by the Flow of Rainwater

  • Hadja, Kawthar;Kharchi, Fattoum
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.151-159
    • /
    • 2017
  • The action of rainwater on reinforced concrete walls has led to an erosion phenomenon. The erosion is very apparent when the walls are inclined. This phenomenon is studied on a real site characterized by different architectural forms. The site dates back to the seventies; it was designed by the architect, modeler of concrete, Oscar Nie Meyer. On this site, the erosion has damaged the cover of the reinforcements and reduced its depth. In this research work, a method of quantification of the erosion is developed. Using this method, the amount of mass loss by erosion was measured on imprints taken from the site. The results are expressed by the rate of mass loss by erosion; they are associated to the height and the inclination of the walls. Moreover, laboratory analysis was carried out on samples taken from the site. From this study, it is recommended to consider the erosion, in any building code, to determine the cover thickness.

High Resolution Spectroscopy of Raman Features in Symbiotic Stars and Young Planetary Nebulae Using the BOES

  • Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.59.4-60
    • /
    • 2016
  • One important aspect of the late stage stellar evolution is the mass loss processes, where a significant amount of stellar material will be returned to the interstellar space to be used for stars of the next generation. Raman scattered O VI and He II by atomic hydrogen in symbiotic stars and young planetary nebulae are found to be excellent tools to investigate the mass loss processes and estimate the mass loss rate. These features appear near hydrogen Balmer emission lines due to the huge cross section in the vicinity of Lyman resonance transitions. With the capability of high spectral resolution and broad spectral coverage, BOES is an ideal instrument to perform Raman spectroscopy of these objects. In this talk, a cursory overview of our research activities on Raman spectroscopy of symbiotics and PNe using the BOES is presented.

  • PDF

Mass Loss and Changes of Nutrients during Decomposition of Phragmites communis at the Fringe of Stream

  • Mun, Hueong-Tae;Namgung, Jeong;Namgung, Jeong-Hee-Namgung
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.157-161
    • /
    • 2000
  • Mass loss and changes of mineral nutrients during decomposition of Phragmites communis for 13 months from November 1998 to December 1999, were investigated at the fringe of stream at Boryeong, Chungnam Province in Korea. Plant materials, which were collected in November 1998. were divided into leaves, culms and rhizomes. Litterbags, 15${\times}$15 cm, were made of nylon mesh with 2-mm$^2$ holes. At 13 months after installation, remaining mass of leaves, culms and rhizomes was 29.0%, 57.4%, 20.6%, respectively. Mass loss rate of the culms was significantly lower than those of the leaves and rhizomes. The decay rate of leaves, culms and rhizomes was 1.21. 0.42 and 1.48 per year, respectively. Initial concentration of N, P, K, Ca and Mg of leaves. culms and rhizomes was 22.5, 9.0, 15.5 mg/g for N, 0.34. 0.10, 0.33 mg/g for P, 15.0, 12.5. 12.3 mg/g for K, 2.84. 0.80, 0.03 mg/g for Ca. 1.94. 0.97, 0.40 mg/g for Mg, respectively. Concentrations of nutrients were higher in leaves than in culms and rhizomes. Except for N and Mg in rhizomes, there was no immobilization period during the decomposition. In the case of remaining K and Ca, most are lost during the first 3 months. Without any suitable method for removal of dead part, eutrophication of freshwater may be accelerated by dead macrophytes.

  • PDF

Effects of intragastric balloon on obesity in obese Korean women for 6 months post removal

  • Pak, Hyeon-Ju;Choi, Ha-Neul;Lee, Hong-Chan;Yim, Jung-Eun
    • Nutrition Research and Practice
    • /
    • v.15 no.4
    • /
    • pp.456-467
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: The prevalence of morbid obesity in Korean women has consistently been increasing, while the overall prevalence rate of obesity in Korean women seems to be stable. In addition to bariatric surgery, intragastric balloons (IGBs), as a nonsurgical therapy, have been reported to be effective in weight loss. However, the beneficial effects of IGB in Korean women with obesity have not been fully investigated. The aim of this study was to evaluate the changes in fat mass in Korean women with obesity who had undergone IGB treatment for 6 mon. SUBJECTS/METHODS: Seventy-four women with obesity (body mass index [BMI] ≥ 25.0 kg/m2) were recruited. Clinical data, including general information, comorbidities with obesity, anthropometric data, and changes in the body fat composition before and after IGB treatment, were obtained from the subjects. RESULTS: Most subjects had one or more comorbidities, such as osteoarthropathy and woman's disease, and had poor eating behaviors, including irregular mealtimes, eating quickly, and frequent overeating. Body composition measurements showed that weight, fat mass, and waist-hip circumference ratio decreased significantly at 6 mon after IGB treatment. In particular, women with morbid obesity (BMI ≥ 30 kg/m2) showed 33% excess weight loss. There was no significant difference in skeletal muscle mass and mineral contents after IGB treatment. CONCLUSIONS: This study suggested that 6 mon of IGB treatment can be a beneficial treatment for obesity without muscle mass and bone mineral loss.

Spalling Characteristics of High Performance Concrete According to Changes in PP Fiber Ratio and Type of Aggregate (PP섬유 혼입율 및 잔골재 종류 변화에 따른 고성능 콘크리트의 폭렬특성)

  • Jung, Hong-Keun;Kim, Won-Ki;Pei, Chang-Chun;Han, Min-Cheol;Yang, Seng-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.61-64
    • /
    • 2009
  • This study is reviewed fire resistance characteristics of high strength concrete according to changes in PP fiber mixing ratio and type of fine aggregate, and the results can be summarized as follows. As fire resistance characteristics, all plain crushed sands prevented spalling regardless of increase in mixing ratio of PP fiber. Mixtures other than the plain showed satisfactory spalling prevention when 0.05 % or more of PP fiber was mixed. After the fire resistance experiment, the plain showed 5.5 % of mass loss rate when fiber was not mixed and others could not be measured. According to increase in mixing ratio of fiber, river sand with fineness modulus of 2.2 showed most satisfactory result of 34 %${\sim}$42 %. Mass loss rate after fire resistance experiment was most satisfactory at about 10 % in the plain crushed sand without mixing of fiber, and all other mixes with 0.05 % PP fiber or more showed 5${\sim}$10 % loss rate.

  • PDF

Water transport through hydrophobic micro/nanoporous filtration membranes on different scales

  • Mian, Wang;Yongbin, Zhang
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.313-320
    • /
    • 2022
  • Theoretical calculation results are presented for the enhancement of the water mass flow rate through the hydrophobic micro/nano pores in the membrane respectively on the micrometer and nanometer scales. The water-pore wall interfacial slippage is considered. When the pore diameter is critically low (less than 1.82nm), the water flow in the nanopore is non-continuum and described by the nanoscale flow equation; Otherwise, the water flow is essentially multiscale consisting of both the adsorbed boundary layer flow and the intermediate continuum water flow, and it is described by the multiscale flow equation. For no wall slippage, the calculated water flow rate through the pore is very close to the classical hydrodynamic theory calculation if the pore diameter (d) is larger than 1.0nm, however it is considerably smaller than the conventional calculation if d is less than 1.0nm because of the non-continuum effect of the water film. When the driving power loss on the pore is larger than the critical value, the wall slippage occurs, and it results in the different scales of the enhancement of the water flow rate through the pore which are strongly dependent on both the pore diameter and the driving power loss on the pore. Both the pressure drop and the critical power loss on the pore for starting the wall slippage are also strongly dependent on the pore diameter.

A Study for the Fire Retardant-Characteristics of Expandable Graphite Composite Materials (팽창흑연을 사용한 복합재료의 난연 특성에 관한 연구)

  • Chun, Kwan-Ok;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.28-33
    • /
    • 2017
  • In this study, the composite material of expandable graphite was made to the material development for improving such as a composite material of the sandwich panels or material properties of a fire door and was tested by the ISO 1182, ISO 5660-1(Cone calorimeter Method). For the test, the composite material of expandable graphite, what the expandable graphite ratio was increased by respectively 0g~30g, was classified A1,A2, A3, A4, and made to the test specimens. Through cone calorimeter test, peak heat release rate(HRR) and total heat release(THR), expanded thickness and expansion rate of each composite material of expandable graphite, and fire prone crack and mass loss rate after burning was measured. Thus, the effect of the addition of the expandable graphite and whether is suitable for reference as a fire retardant, was analyzed. Consequently the correlation of THR and fire retardant performance rate was confirmed.

Ignition and Heat Release Rate of Wood-based Materials in Cone Calorimeter Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • This study was performed to evaluate the burning characteristics of wood-based materials and the effect of surface treatment of fire retardant using cone calorimeter. Four types of wood-based materials, such as Plywood, Oriented Strand Board (OSB), Particle Board (PB) and Medium Density Fiberboard (MDF), were tested at a constant heat flux of $50kW/m^2$ to investigate the time to ignition, mass loss rate, heat release rate, effective heat of combustion, etc. In addition, each type of wood-based material was tested at the same heat flux after fire retardant treatment on the surface to evaluate the effect of this treatment on the burning characteristics. The surface treatment of fire retardant, by the amount of $110g/m^2$, delayed the time to ignition almost twice. However, it was indicated that heat release rate, mass loss rate, and effective heat of combustion were not significantly affected by fire retardants treatment for all types of wood-based materials.

Enhanced mass balance Tafel slope model for computer based FEM computation of corrosion rate of steel reinforced concrete coupled with CO2 transport

  • Hussain, Raja Rizwan
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • This research paper aims at computer based modeling of carbonation induced corrosion under extreme conditions and its experimental verification by incorporating enhanced electrochemical and mass balance equations based on thermo-hygro physics with strong coupling of mass transport and equilibrium in micro-pore structure of carbonated concrete for which the previous research data is limited. In this paper the carbonation induced electrochemical corrosion model is developed and coupled with carbon dioxide transport computational model by the use of a concrete durability computer based model DuCOM developed by our research group at concrete laboratory in the University of Tokyo and its reliability is checked in the light of experiment results of carbonation induced corrosion mass loss obtained in this research. The comparison of model analysis and experiment results shows a fair agreement. The carbonation induced corrosion model computation reasonably predicts the quantitative behavior of corrosion rate for normal air dry relative humidity conditions. The computational model developed also shows fair qualitative corrosion rate simulation and analysis for various pH levels and coupled environmental actions of chloride and carbonation. Detailed verification of the model for the quantitative carbonation induced corrosion rate computation under varying relative conditions, different pH levels and combined effects of carbonation and chloride attack remain as scope for future research.

An improved 1-D thermal model of parabolic trough receivers: Consideration of pressure drop and kinetic energy loss effects

  • Yassine Demagh
    • Advances in Energy Research
    • /
    • v.8 no.1
    • /
    • pp.21-39
    • /
    • 2022
  • In this study, the first law of thermodynamics was used to establish a one-dimensional (1-D) thermal model for parabolic trough receiver (PTR) taking into account the pressure drop and kinetic energy loss effects of the heat transfer fluid (HTF) flowing inside the absorber tube. The validation of the thermal model with data from the SEGS-LS2 solar collector-test showed a good agreement, which is consistent with the previously established models for the conventional straight and smooth (CSS) receiver where the effects of pressure drop and kinetic energy loss were neglected. Based on the developed model and code, a comparative study of the newly designed parabolic trough S-curved receiver versus the CSS receiver was conducted and solar unit's performances were analyzed. Without any supplementary devices, the S-curved receiver enhances the performance of the parabolic trough module, with a maximum of 0.16% compared to CSS receiver with the same sizes and mass flow rates. Thermal losses were reduced by 7% due to the decrease in the temperature of the outer surface of the receiver tube. In addition, it has been shown that from a mass flow rate of 9.5 kg/s the heat losses of the S-curved receiver remain unchanged despite the improvement in the heat transfer rate.