Browse > Article
http://dx.doi.org/10.12989/mwt.2022.13.6.313

Water transport through hydrophobic micro/nanoporous filtration membranes on different scales  

Mian, Wang (School of Electronic Engineering, Changzhou College of Information Technology)
Yongbin, Zhang (College of Mechanical Engineering, Changzhou University)
Publication Information
Membrane and Water Treatment / v.13, no.6, 2022 , pp. 313-320 More about this Journal
Abstract
Theoretical calculation results are presented for the enhancement of the water mass flow rate through the hydrophobic micro/nano pores in the membrane respectively on the micrometer and nanometer scales. The water-pore wall interfacial slippage is considered. When the pore diameter is critically low (less than 1.82nm), the water flow in the nanopore is non-continuum and described by the nanoscale flow equation; Otherwise, the water flow is essentially multiscale consisting of both the adsorbed boundary layer flow and the intermediate continuum water flow, and it is described by the multiscale flow equation. For no wall slippage, the calculated water flow rate through the pore is very close to the classical hydrodynamic theory calculation if the pore diameter (d) is larger than 1.0nm, however it is considerably smaller than the conventional calculation if d is less than 1.0nm because of the non-continuum effect of the water film. When the driving power loss on the pore is larger than the critical value, the wall slippage occurs, and it results in the different scales of the enhancement of the water flow rate through the pore which are strongly dependent on both the pore diameter and the driving power loss on the pore. Both the pressure drop and the critical power loss on the pore for starting the wall slippage are also strongly dependent on the pore diameter.
Keywords
hydrophobic wall; mass transfer; membrane; multiscale; nanopore; wall slippage;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Meyer, E., Overney, R.M., Dransfeld, K., Gyalog, T. (1998), Friction and Rheology on the Nanometer Scale. World Scientific Press, New Jersey, U.S.A.
2 Myers, T.G. (2011), "Why are slip lengths so large in carbon nanotubes?" Microfluid. Nanofluid., 10, 1141-1145. https://doi.org/10.1007/s10404-010-0752-7   DOI
3 Perdikaris, P., Grinberg, L. and Karniadakis, G.E. (2016), "Multiscale modeling and simulation of brain blood flow", Phys. Fluids, 28, 021304. https://doi.org/10.1063/1.4941315   DOI
4 Qin, X.C., Yuan, Q., Zhao, Y., Xie, S. and Liu, Z. (2011), "Measurement of the rate of water translocation through carbon nanotubes", Nano Lett., 11, 2173-2177. https://doi.org/10.1021/nl200843g   DOI
5 Radha1, A. Esfandiar1, F., Wang, A.P., Rooney, K., Gopinadhan, A., Keerthi, A., Mishchenko, A., Janardanan, P., Fumagalli, M., Lozada-Hidalgo, S., Garaj, S.J., Haigh, I.V., Grigorieva, H.A., and Wu, A.K. (2016), "Molecular transport through capillaries made with atomic-scale precision", Nature, 538, 222-225. https://doi.org/10.1038/nature19363   DOI
6 Ray, S.S., Chando, P. and Yarin, A.L. (2009), "Enhanced release of liquid from carbon nanotubes due to entrainment by an air layer", Nanotechnology, 20, 095711. https://doi.org/10.1088/0957-4484/20/9/095711   DOI
7 Ritos, K., Mattia, D., Calabro, F. and Reese, J. M. (2014), "Flow enhancement in nanotubes of different materials and lengths", J. Chem. Phys., 140, 014702. https://doi.org/10.1063/1.4846300   DOI
8 Secchi, E., Marbach, S., Nigues, A., Stein, D., Siria, A. and Bocquet, L. (2016), "Massive radius-dependent flow slippage in carbon nanotubes", Nature, 537, 210-213. https://doi.org/10.1038/nature19315   DOI
9 Thomas, J.A. and McGaughey, A.J.H. (2008), "Density, distribution, and orientation of water molecules inside and outside carbon nanotubes", J. Chem. Phys., 128, 084715. https://doi.org/10.1063/1.2837297   DOI
10 Thomas, J.A. and McGaughey, A.J.H. (2009), "Water flow in carbon nanotubes: Transition to subcontinuum transport", Phys. Rev. Lett., 102, 184502. https://doi.org/10.1103/PhysRevLett.102.184502   DOI
11 Thomas, J.A., McGaughey, A.J.H. and Kuter-Arnebeck, O. (2010), "Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation", Int. J. Therm. Sci., 49, 281-289. https://doi.org/10.1016/j.ijthermalsci.2009.07.008   DOI
12 Walther, J.H., Ritos, K., Cruz-Chu, E.R., Megaridis, C.M. and Koumoutsakos, P. (2013), "Barriers to superfast water transport in carbon nanotube membranes", Nano Lett., 13, 1910-1914. https://doi.org/10.1021/nl304000k   DOI
13 Whitby, M. and Quirke, N. (2007), "Fluid flow in carbon nanotubes and nanopipes", Nature Nanotechnology, 2, 87-94. https://doi.org/10.1038/nnano.2006.175   DOI
14 Whitby, M.C., Cagno, L., Thanou, M. and Quirke, N. (2008), "Enhanced fluid flow through nanoscale carbon pipes", Nano Lett., 8, 2632-2637. https://doi.org/10.1021/nl080705f   DOI
15 Yen, T.H., Soong, C.Y. and Tzeng, P.Y. (2007), "Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows", Microfluid. Nanofluid., 3, 665-675. https://doi.org/10.1007/s10404-007-0154-7   DOI
16 Zhang, Y.B. (2004), "Modeling of molecularly thin film elastohydrodynamic lubrication", J. Balkan Trib. Assoc., 10, 394-421.
17 Zhang, Y.B. (2013a), "The Reynolds equation for boundary film considering the non-continuum effect and its application to the one-dimensional micro step bearing: Part I-Calculation for no boundary slippage", J. Comput. Theor. Nanosci., 10, 603-608. https://doi.org/10.1166/jctn.2013.2742   DOI
18 Zhang, Y.B. (2015a), "The flow factor approach model for the fluid flow in a nano channel", Int. J. Heat Mass Trans., 89, 733-742. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.092   DOI
19 Zhang, Y.B. (2013b), "The Reynolds equation for boundary film considering the non-continuum effect and its application to the one-dimensional micro step bearing: Part II-Calculation for boundary slippage", J. Comput. Theor. Nanosci., 10, 609-615. https://doi.org/10.1166/jctn.2013.2742   DOI
20 Zhang, Y.B. (2014), "Review of hydrodynamic lubrication with interfacial slippage", J. Balkan Trib. Assoc., 20, 522-538.
21 Zhang, Y.B. (2015b), "A quantitative comparison between the flow factor approach model and the molecular dynamics simulation results for the flow of a confined molecularly thin fluid film", Theor. Comput. Fluid Dyn., 29, 193-204. https://doi.org/10.1007/s00162-015-0348-7   DOI
22 Zhang, Y.B. (2016a), "The flow equation for a nanoscale fluid flow", Int. J. Heat Mass Transf., 92, 1004-1008. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.008   DOI
23 Zhang, Y. B. (2016b), "Calculating the maximum flowing velocity of the Poiseuille flow in a nano channel by the flow factor approach model", Int. Commun. Heat Mass Transf., 73, 111-113. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.014   DOI
24 Zhang, Y.B. (2016c), "An additional validation of the flow factor approach model", Int. J. Heat Mass Transf., 95, 953-955. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.016   DOI
25 Zhang, Y.B. (2017), "Transport in nanotube tree", Int. J. Heat Mass Transf., 114, 536-540. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.105   DOI
26 Zhang, Y.B. (2018), "Size effect on nanochannel flow explored by the flow factor approach model", Int. J Heat Mass Transf., 125, 681-685. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.064   DOI
27 Azamat, J. (2021), "Application of graphene, graphene oxide, and boron nitride nanosheets in the water treatment", Membr. Water Treat., 12, 227-243. https://doi.org/10.12989/mwt.2021.12.5.227   DOI
28 Zhang, Y.B. (2019), "Density and viscosity profiles governing nanochannel flow", Phys. A: Stat. Mech. Its Appl., 521, 1-8. https://doi.org/10.1016/j.physa.2019.01.079   DOI
29 Zhang, Y.B. (2020), "Modeling of flow in a very small surface separation", Appl. Math. Mod., 82, 573-586. https://doi.org/10.1016/j.apm.2020.01.069   DOI
30 Atkas, O. and Aluru, N.R. (2002), "A combined continuum/DSMC technique for multiscale analysis of microfluidic filters", J. Comput. Phys., 178, 342-372. https://doi.org/10.1006/jcph.2002.7030   DOI
31 Borg, M.K. and Reese, J.M. (2017), "Multiscale simulation of enhanced water flow in nanotubes", MRS Bullet., 42, 294-299. https://doi.org/10.1557/mrs.2017.59.   DOI
32 Calabro, F., Lee, K.P. and Mattia, D. (2013), "Modelling flow enhancement in nanochannels: Viscosity and slippage", Appl. Math. Lett., 26, 991-994. https://doi.org/10.1016/j.aml.2013.05.004   DOI
33 Das, D., Kayal, N., and Innocentini, M.D.M. (2021), "Effect of processing parameters on mullite bonded SiC membrane for turbid water filtration", Membr. Water Treat., 12(3), 133-138. https://doi.org/10.12989/mwt.2021.12.3.133   DOI
34 Dai, H., Xu, Z., and Yang, X. (2016), "Water permeation and ion rejection in layer-by-layer stacked graphene oxide nanochannels: A molecular dynamics simulation", J. Phys. Chem., 120, 22585-22596. https://doi.org/10.1021/acs.jpcc.6b05337   DOI
35 Gruener, S., Wallacher, D., Greulich, S., Busch, M. and Huber, P. (2016), "Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and n-hexane", Phys. Rev., 93, 013h102. https://doi.org/10.1103/PhysRevE.93.013102   DOI
36 Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C.P., Noy, A. and Bakajin, O. (2006), "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312, 1034-1037. https://doi.org/10.1126/science.1126298   DOI
37 Kasiteropoulou, D., Karakasidis, T.E. and Liakopoulos, A. (2012), "A dissipative particle dynamics study of flow in periodically grooved nanochannels", Int. J. Num. Meth. Fluids, 68, 1156-1172. https://doi.org/10.1002/fld.2599   DOI
38 Itoh, Y., Chen, S., Hirahara, R., Konda, T., Aoki, T., Ueda, T., Shimada, I., Cannon, J.J., Shao, C., Shiomi, J., Tabata, K.V., Noji, H., Sato, K., and Aida, T. (2022), "Ultrafast water permeation through nanochannels with a densely fluorous interior surface", Science, 376, 738-743. https://doi.org/10.1126/science.abd0966   DOI
39 Jiang, C.T. and Zhang, Y.B. (2022), "Direct matching between the flow factor approach model and molecular dynamics simulation for nanochannel flows", Sci. Rep., 12, 396. https://doi.org/10.1038/s41598-021-04391-5   DOI
40 Kannam, S.K., Todd, B.D., Hansen, J.S. and Daivis, P.J. (2013), "How fast does water flow in carbon nanotubes?", J. Chem. Phys., 138, 094701. http://doi.org/10.1063/1.4793396   DOI
41 Kasiteropoulou, D., Karakasidis, T.E. and Liakopoulos, A. (2016), "Study of fluid flow in grooved micro and nano-channels via dissipative particle dynamic: a tool for desalination membrane design", Desal. Water Treat., 57, 11675-11684. https://doi.org/10.1080/19443994.2016.1141118   DOI
42 Li, J. and Zhang, Y.B. (2021), "Flow equations and their borderlines for different regimes of mass transfer", Front. Heat Mass Transf., 16, 21. http://doi.org/10.5098/hmt.16.21   DOI
43 Majumder, M., Chopra, N., Andrews, R. and Hinds, B.J. (2005), "Enhanced flow in carbon nanotubes", Nature, 438, 44. https://doi.org/10.1038/438044a   DOI
44 Mattia, D. and Calabro, F. (2012), "Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions", Microfluid. Nanofluid., 13, 125-130. https://doi.org/10.1007/s10404-012-0949-z   DOI