• Title/Summary/Keyword: Mass flow meter

Search Result 123, Processing Time 0.033 seconds

Study on the Transient Characteristics of the Sensor Tube of a Thermal Mass Flow Meter (열식 질량 유량계 센서관의 과도 특성에 관한 연구)

  • Kim, Dong-Kwon;Han, Il-Young;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.308-313
    • /
    • 2003
  • Thermal mass flow meters (TMFMs) are most widely used for measuring mass flow rates in the semiconductor industry. A TMFM should have a short response time in order to measure the time-varying flow rate rapidly and accurately. Therefore it is important to study transient heat transfer phenomena in the sensor tube of a TMFM that is the most critical part in the TMFM. In the present work, a simple numerical model for transient heat transfer phenomena of the sensor tube of a TMFM is presented. Numerical solutions for the tube and fluid temperatures in a transient state are obtained using the proposed model and compared with experimental results to validate the proposed model. Based on numerical solutions, heat transfer mechanism in a transient state in the sensor tube is explained. Finally, a correlation for predicting the response time of a sensor tube is presented. The correlation is verified by experimental results.

  • PDF

A CFD Analysis of Gas Flow through an Ultrasonic Meter (초음파 유량계를 통하는 기체유동의 CFD 해석)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Lee, Ho-Joon;Hwang, Shang-Yoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.998-1003
    • /
    • 2003
  • Ultrasonic flow metering(UFM) technology is being received much attention from a variety of industrial fields to exactly measure the flow rate. The UFM has much advantage over other conventional flow meter systems, since it has no moving parts, and offers good accuracy and reliability without giving any disturbances to measure the flow rate, thereby not causing pressure losses in the flow fields. In the present study, 3-dimensional, unsteady, compressible Navier-Stokes equations are solved by a finite volume scheme, based upon the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral method for time derivatives. In order to simulate multi-path ultrasonic flow meter, an excited pressure signal is applied to three different locations upstream, and the pressure signals are received at three different locations downstream. The mean flow velocities are calculated by the time difference between upstream and downstream propagating pressure signals. The obtained results show that the present CFD method simulates successfully ultrasonic meter gas flow and the mean velocity measured along the chord near the wall is considerably influenced by the boundary layers.

  • PDF

An experimental study of Incompressible time based mass flow controller (비압축성 시간식 질량유량계의 특성에 관한 연구)

  • Chang, Young-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.55-58
    • /
    • 2008
  • The objective of this research is to design, manufacture and test a mass flow controller capable of measuring compressible as well as incompressible fluid flows based on a 'bucket and stop-watch' method. The basic principle behind such a system is the measurement of time, where the time taken to fill and empty a bucket of known volume is measured. This device should be able to handle fluid flows in the range of 0.1 ml/min to 10 ml/min within an accuracy of ${\pm}$1%. For the flow meter to be able to compete with established designs, it must be not only comparable in cost and robustness, but also very accurate and reliable as well.

  • PDF

Effects of Pressure Tapping on flow Rate Characteristics of Triangular Separate Bar Differential Pressure flow Meter (삼각 분리 막대형 차압 유량계의 압력탭이 유량 특성에 미치는 영향)

  • Lee, Choong-Hoon;Park, Dong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1680-1686
    • /
    • 2009
  • Flow characteristics of a differential pressure flow meters which have a shape of triangular separate bar (TSB) was investigated according to machining conditions in pressure tapping holes. Size of pressure tapping holes is machined with either 1.0 mm or 1.5 mm in diameter. Also, number of pressure tapping holes are drilled either 9 or 17. The mass flow rate of the TSB flow meters are calibrated with a laminar flow meter by connecting them in line. The mass flow rate in the TSB flow meters are plotted with a non-dimensional parameter H which includes the gas temperature, exhaust gas pressure and differential pressure at the flow meters, and atmospheric pressure. An empirical correlation between the mass flow rate at the TSB flow meter and the non-dimensional parameter H was obtained. The empirical correlation showed highly linear relationship between the mass flow rate and the non-dimensional parameter H. The hole size of the pressure tapping holes has a bigger effect on the flow rate than the number of the tapping holes.

  • PDF

Characteristics of the Air Flow Variation by Throttle Step Change in a Gasoline Engine (스로틀 개폐에 따른 가솔린 엔진의 비정상상태 유량변화 특성)

  • 박경석;고상근;노승탁;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.92-101
    • /
    • 1996
  • In a gasoline engine, the characteristics of air flow is very important not only for the design of the intake system geometry bout also for the accurate measurement of the induction air mass. In this study, an air flow rate measurement of the induction air mass. In this study, an air flow rate measurement was conducted by using the hot wire flow meter at the upstream of the intake port and the throttle. At the upstream of the throttle, the overshoot phenomena of the air flow rate by fast throttle opening were analyzed with choked flow. At the upstream of the intake port, the cylinder variation of the air flow rate and the difference between fast throttle opening and closing were showed during the unsteady state by the throttle step change. The results of this study can be used for the design of the throttle valve geometry and cylinder by cylinder control.

  • PDF

A Study on Flow Characteristics of a Separate Triangular Bar Differential Pressure Flow Meter for Measuring Exhaust Flow Rate of Diesel Engine (디젤엔진 배기 가스 유량 측정용 삼각 분리 막대형 차압유량계 유량 특성 연구)

  • Lee, Choong-Hoon;Kim, Kwang-Il;Kim, Min-Chang;Park, Dong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.563-568
    • /
    • 2007
  • A separate triangular bar type differential pressure flow meter was developed for measuring exhaust gas flow rate from Diesel engine. Three kinds of the separate triangular bar flow meters whose aerodynamic angles are different one another are made and evaluated, respectively. The experimental results show that an aerodynamic shape has a effect on the pressure difference between upstream and downstream at the flow meter, that is, the thinner the shape of the separate triangular bar flow meter is, the smaller the pressure difference at the flow meter is. The separate triangular bar type flow meter was calibrated at both cold and high temperature of the gas flow. A burner system was designed for raising the gas temperature and it was well operated in controlling the gas temperature. An empirical correlation between mass flow rate and differential pressure at the separate triangular bar flow meter was obtained and the empirical correlation was also corrected by the gas temperature.

Numerical Study on the Pulse Heating Type Infinitesimal Liquid Mass Flow Meter (단속가열식 액체용 극소질량유량 계측기에 관한 수치해석적 연구)

  • Kim, Taig Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.119-124
    • /
    • 2015
  • Numerical study on the new design of the liquid mass flow meter in infinitesimal flow rate for semiconductor production is performed. The heater and thermistor are wired on the circular tube about 0.3mm inner diameter with designed gap between them. After the time interval from the single pulse heating the thermistor reaches its peak temperature and this time interval is almost inversely proportional to the liquid mass flow rate. The axial conduction in tube wall and convection through the flow is combined. As a result, the peak temperature moving velocity is much smaller than flow mean velocity and there is no linear relationship between them. In this study, the effects of design parameters such as the tube inner/outer diameter, wired heater width, and the gap between heater and thermistor are investigated and the trends of optimization in these parameters are discussed.

An Evaluation of the Accuracy of Mini-Wright Peak Flowmeters in Patients with Asthma and Chronic Obstructive Pulmonary Disease (천식 및 만성폐쇄성폐질환 환자에서 Mini-Wright Peak Flowmeter로 측정한 최대호기유속의 정확도)

  • Choi, Won-Il;Han, Seung-Beom;Jeon, Young-June
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.3
    • /
    • pp.310-319
    • /
    • 2001
  • Background : The peak flowmeter is very useful in monitoring of out-patients as well as those in emergency departments because of its convenience and simplicity with low cost. There have been many studies aimed at determining the accuracy and reproducibility of the peak flow meter in normal population. However, there is a paucity of reports regarding its accuracy in patients with chronic obstructive pulmonary disease(COPD) or asthma. The accuracy of the peak expiratory flow(PEF) measured with a mini-Wright peak flowmeter was assessed by a comparison with the results of a mass flow sensor. Methods : The PEF measurements were performed in 108 patients aged 19-82 years presenting with either a chronic obstructive lung disease or asthma before and after inhaling salbutamol. The PEF measurements from the mini-Wright flowmeter were compared with those obtained by the calibrated mass flow sensor. Results : The average of the readings taken by the mini-Wright meter were 37-39 l/min higher than those taken by the mass flow sensor. The average percentage error of the mini-Wright meter were higher, ranging less than 300 l/min. The mean of the differences between the values obtained using both instruments (the bias)$\pm$limits of agreement(${\pm}2$ SD) were $37.1{\pm}90\;l/min$ for the PEF(p<0.001). Conclusions : The mini-Wright peak flowmeter overestimated the flows in patients with COPD or asthma. It was also found that the accuracy of the mini-Wright peak flowmeter decreased in its mid to low range. The limits of agreement are wide and the difference between the two instruments is significant. Therefore, the measurements made between the two types of machines in patients with asthma or COPD cannot be used interchangeably.

  • PDF

A Study on the Meter-Out and Meter-In Speed Control Characteristics in Pneumatic Cushion Cylinders (공기압 쿠션 실린더의 미터아웃/미터인 속도제어 특성에 관한 연구)

  • Kim, Do-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Pneumatic cylinders are widely used to actuators in automatic equipments because they are relatively inexpensive, simple to install and maintain, offer robust design and operation, are available in a wide range of standard sizes and design alternatives. This paper presents a comparative study among the dynamic characteristics of meter-out and meter-in speed control of pneumatic cushion cylinders with a relief valve type cushion mechanism. Because of the nonlinear differential equations and a requirement for simultaneous iterative solution in a mathematical model of a double acting pneumatic cushion cylinder, a computer simulation is carried out to investigate pressure, temperature, mass flow rate in cushion chamber and displacement and velocity time histories of piston under various operating conditions. It is found that the piston velocity and pressure response in meter-in speed control are more oscillatory than with meter-out those when pneumatic cushion cylinders are driven at a high-speed. In meter-out speed control, the effective area of the flow control valve is larger than that of meter-in, and the supply pressure has to be much higher than the pressure required to move the load because it has also to overcome the back pressure in cushion chamber.