DOI QR코드

DOI QR Code

Numerical Study on the Pulse Heating Type Infinitesimal Liquid Mass Flow Meter

단속가열식 액체용 극소질량유량 계측기에 관한 수치해석적 연구

  • 김택영 (한국산업기술대학교 기계공학과)
  • Received : 2014.04.09
  • Accepted : 2014.11.04
  • Published : 2015.02.01

Abstract

Numerical study on the new design of the liquid mass flow meter in infinitesimal flow rate for semiconductor production is performed. The heater and thermistor are wired on the circular tube about 0.3mm inner diameter with designed gap between them. After the time interval from the single pulse heating the thermistor reaches its peak temperature and this time interval is almost inversely proportional to the liquid mass flow rate. The axial conduction in tube wall and convection through the flow is combined. As a result, the peak temperature moving velocity is much smaller than flow mean velocity and there is no linear relationship between them. In this study, the effects of design parameters such as the tube inner/outer diameter, wired heater width, and the gap between heater and thermistor are investigated and the trends of optimization in these parameters are discussed.

반도체 생산에 사용되는 액체용 극소 질량유량계측기의 새로운 설계 안에 대하여 수치해석적으로 연구하였다. 내경 0.3mm 정도인 원관 외부에 히터선을 일정 폭 권선하고, 히터로부터 일정거리 떨어진 후류에 온도계측용 써미스터선을 권선하는 형상이다. 히터에 단일펄스 가열을 하면 일정시간 경과 후 써미스터가 최고온도를 겪는다. 최고온도까지 걸리는 시간은 질량유량과 거의 반비례하며, 이를 이용하여 질량유량을 계측할 수 있다. 관벽을 통한 전도열전달과 액체유동에 의한 대류열전달이 복합적으로 작용하므로 관내유동의 평균속도와 관벽을 통한 최고온도의 이동속도는 큰 차이를 나타내며, 상호 비선형적인 특성을 보인다. 본 연구에서는 센서관의 내 외경, 히터의 권선폭 및 히터와 써미스터 사이의 거리를 설계변수로 고려하여 수치해석적으로 제안한 설계사항을 분석하였으며, 설계인자의 최적화에 대한 검토를 수행하였다.

Keywords

References

  1. Toda, K., Maeda, Y., Sanemasa, I., Ishikawa, K. and Kimura, N., 1998, "Characteristics of a Thermal Massflow Sensor in Vacuum Systems," Sensors and Actuators A, Vol. 69, pp. 62-67. https://doi.org/10.1016/S0924-4247(97)01756-1
  2. Kim, S. J. and Jang, S. P., 2001, "Experimental and Numerical Analysis of Heat Transfer Phenomena in a Sensor Tube of a Mass Flow Controller," Int. J. Heat Mass Transfer, Vol. 44, pp. 1711-1724. https://doi.org/10.1016/S0017-9310(00)00216-7
  3. Viswanathan, M., Kandaswamy, A., Sreekala, S. K. and Sajna, K. V., 2002, "Development, Modeling and Certain Investigations on Thermal Mass Flow Meters," Flow Measurement and Instrumentation, Vol. 12, pp. 353-360. https://doi.org/10.1016/S0955-5986(02)00002-X
  4. Kim, D. K., Han, I. Y. and Kim, S. J., 2007, "Study on the Steady-state Characteristics of the Sensor Tube of a Thermal Mass Flow Meter," Int. J. Heat Mass Transfer, Vol. 50, pp. 1206-1211. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.021
  5. Cheesewright, R., Clark, C., Belhadj, A. and Hou, Y. Y., 2003, "The Dynamic Response of Coriolis Mass Flow Meters," J. Fluids and Structures, Vol. 18, pp. 165-178. https://doi.org/10.1016/j.jfluidstructs.2003.06.001
  6. Henrt, M. P., Clark, C., Duta, M., Cheesewright, R. and Tombs, M., 2003, "Response of a Coriolis Mass Flow Meter to Step Changes in Flow Rate," Flow Measurement and Instrumentation, Vol. 14, pp. 109-118. https://doi.org/10.1016/S0955-5986(03)00014-1
  7. Clark, C., Wang, S. and Cheesewright, R., 2006, "The Performance Characteristics of a Micro-machined Coriolis Flow Meter: An Evaluation by Simulation," Flow Measurement and Instrumentation, Vol. 17, pp. 325-333. https://doi.org/10.1016/j.flowmeasinst.2006.06.003
  8. Gaskin, I., Shapiro, E. and Drikakis, D., 2011, "Theoretical, Numerical, and Experimental Study of the Time of Flight Flowmeter," ASEM J. Fluid Engineering, Vol. 133, No. 4, pp. 1-8.
  9. Liu, R. P., Fuent, M. J., Henry, M. P. and Duta, M. D., 2001, "A Neural Network to Correct Mass Flow Errors Caused by Two-phase Flow in a Digital Coriolis Mass Flowmeter," Flow Measurement and Instrumentation, Vol. 12, pp. 55-63.
  10. Bergman, T. L., Lavine, A. S., Incropera, F. P. and DeWitt, D. P., 2011, Fundamentals of Heat and Mass Transfer, 7th ed., John Wiley & Sons Inc.