• Title/Summary/Keyword: Mass Extinction

Search Result 99, Processing Time 0.03 seconds

Quantifying Variability of YSOs in the Mid-IR Over Six Years with NEOWISE

  • Park, Wooseok;Lee, Jeong-Eun;Contreras Pena, Carlos;Johnstone, Doug;Herczeg, Gregory;Lee, Sieun;Lee, Seonjae;Bhardwaj, Anupam;Schieven, Gerald
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2021
  • Variability in Young Stellar Objects (YSOs) can be caused by time-dependent accretion rates, geometric changes in the circumstellar disks, the stochastic hydromagnetic interactions between stellar surfaces and inner disk edges, reconnections within the stellar magnetosphere, and hot/cold spots on stellar surfaces. We uncover ~1400 variables from a sample of ~5300 YSOs in nearby low-mass star-forming regions using mid-IR light curves obtained from the 5.5-years NEOWISE All Sky Survey. The mid-IR variability traces a wide range of dynamical, physical, and geometrical phenomenon. We classify six types of YSO variability based on their light curves: secular variability (Linear, Curved, Periodic) and stochastic variability (Burst, Drop, Irregular). YSOs in earlier evolutionary stages have higher fractions of variables at all types and higher amplitudes for the variability. Along with brightness variability, we also find a diverse range of secular color variations, which can be attributed to a competitive interplay between the variable accretion luminosity of the central source and the variable extinction by material associated with the accretion process. We compare the variability of known FUors/EXors and VeLLOs/LLSs, which represent two extreme ends (burst versus quiescent) of the episodic accretion process; FUors/EXors have a higher fraction of variables (65%) than VeLLOs/LLSs (41%). Short-term (few day) and long-term (decades) variability, as well as possible AGB contamination in the YSO catalogues, are also discussed.molecules become more complex by surface chemistry induced directly by high energy photons or by the thermal energy diffused over heated grain surface. Therefore, the ice composition is an

  • PDF

ASSOCIATION OF INFRARED DARK CLOUD CORES WITH YSOS: STARLESS OR STARRED IRDC CORES

  • Kim, Gwan-Jeong;Lee, Chang-Won;Kim, Jong-Soo;Lee, Youn-Gung;Ballesteros-Paredes, Javier;Myers, Philip C.;Kurtz, S.
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.9-23
    • /
    • 2010
  • In this paper we examined the association of Infrared Dark Cloud (IRDC) cores with YSOs and the geometric properties of the IRDC cores. For this study a total of 13,650 IRDC cores were collected mainly from the catalogs of the IRDC cores published from other studies and partially from our catalog of IRDC cores containing new 789 IRDC core candidates. The YSO candidates were searched for using the GLIMPSE, MSX, and IRAS point sources by the shape of their SED or using activity of water or methanol maser. The association of the IRDC cores with these YSOs was checked by their line-of-sight coincidence within the dimension of the IRDC core. This work found that a total of 4,110 IRDC cores have YSO candidates while 9,540 IRDC cores have no indication of the existence of YSOs. Considering the 12,200 IRDC cores within the GLIMPSE survey region for which the YSO candidates were determined with better sensitivity, we found that 4,098 IRDC cores (34%) have at least one YSO candidate and 1,072 cores among them seem to have embedded YSOs, while the rest 8,102 (66%) have no YSO candidate. Therefore, the ratio of [N(IRDC core with protostars)]/[N(IRDC core without YSO)] for 12,200 IRDC cores is about 0.13. Taking into account this ratio and typical lifetime of high-mass embedded YSOs, we suggest that the IRDC cores would spend about $10^4\sim10^5$ years to form high-mass stars. However, we should note that the GLIMPSE point sources have a minimum detectable luminosity of about $1.2 L_{\odot}$ at a typical IRDC core's distance of ~4 kpc. Therefore, the ratio given here should be a 100ver limit and the estimated lifetime of starless IRDC cores can be an upper limit. The physical parameters of the IRDC cores somewhat vary depending on how many YSO candidates the IRDC cores contain. The IRDC cores with more YSOs tend to be larger, more elongated, and have better darkness contrast than the IRDC cores with fewer or no YSOs.

Characteristics of Hypoxic Water Mass Occurrence in the Northwestern Gamak Bay, Korea, 2017 (2017년 한국 가막만 북서내만해역 빈산소수괴 발생의 특성)

  • Jeong, Hui-Ho;Choi, Sang-Duk;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.708-720
    • /
    • 2021
  • As hypoxia adversely affects the marine environment in northwestern Gamak Bay every summer, the present study determined its comprehensive occurrence mechanisms using the Multiple Regression Analysis (MRA) and suggested management directions based on the primary MRA factors. The first hypoxia occurred by thermocline related to weather conditions, with organic matter deposited inside the bay on 26th June, 2017. Additionally, on 12th July, halocline was also developed by increased rainfall, and the hypoxia was most expanded horizontally and vertically. The primary factors were the stratification and deposited organic matter. In contrast, the hypoxia correlated to phytoplankton growth and deposited organic matter on 8th August was diminished with remarkably less precipitation. However, the stable halocline was caused by massive precipitation, and the reproduced phytoplankton re-generated the expanded hypoxia on 16th August despite a short sampling interval. Subsequently, the hypoxia influenced by the deposited organic matter spread shallowly along the seafloor on 13th September as the extinction period. These results suggest that stratification alleviation technologies, and the improvement and removal of the organic matter deposited on the surface sediment are necessary.

Burning Behavior of Flooring Materials in the Cone Calorimeter and Evaluation of Toxic Smoke (콘 칼로리미터를 이용한 건축 바닥재의 연소거동과 가스유해성 평가)

  • Lee, Jang-Won;Lee, Bong-Woo;Kwon, Seong-Pil;Lee, Byoung-Ho;Kim, Hee-Soo;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.45-53
    • /
    • 2008
  • The burning behaviors of board for flooring materials were investigated using cone calorimetry at an incident heat flux of $50kWm^{-2}$. Seven domestic flooring materials were used to observe the burning behavior of maximum heat release rate, total heat release and average heat release rate. The experimental data indicated that the medium density fiberboard (MDF) flooring had higher release rate than the other flooring materials. Also, the mass loss of MDF flooring was higher than the other floors. When measuring the smoke production from burning, PE fiberboard flooring and PVC Plastic Resin Sheet showed higher carbon monoxide and carbon dioxide yield than the others. The average smoke release of both carbon dioxide and carbon monoxide through specific extinction area was similar. Toxic smoke measurement from flooring materials were determined by the mouse stop motion, and the results indicated that MDF flooring contains more toxic material than the other flooring materials.

A Review on Microbialites: a Korean Perspective (미생물암에 대하여: 한국적 관점)

  • Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.291-305
    • /
    • 2015
  • Microbialites are defined as rocks formed by microbial organisms. After their first appearance around 3.5 billion years ago, microbialites occur in various depositional environments throughout geological periods. Microbial organisms form microbialites by trapping and binding detrital sediments and/or precipitating carbonate cements, resulting in formation of various microstructures and mesostructures. Four major types of microbialites are distinguished based on their mesostructures: stromatolite, thrombolite, dendrolite, and leiolite. In the geological records, occurrences of microbialites are influenced by calcium carbonate saturation of seawater and interaction of microbialites with metazoans. Stromatolites mainly flourished during the Precambrian, and diminished as level of atmospheric carbon dioxide declined. On the other hand, thrombolites, mainly formed by calcified microbes, began to flourish from the Neoproterozoic. As metazoans diversified in the Phanerozoic, proportion of the microbialites within sedimentary record declined. Since then, microbialites only occasionally flourished during the Phanerozoic, such as shortly after mass-extinction events. In the Korean Peninsula, microbialites occur in the Neoproterozoic Sangwon System, the Early Paleozoic Joseon Supergroup, and the Cretaceous Gyeongsang Supergroup, which form different shapes according to their age and depositional environments. By performing detailed studies on these Korean microbialites, it is possible to understand how microbes affected geological records and sedimentary environments, as well as their interaction with other organisms.

EVOLUTION OF HUMAN DENTITION (사람 치열의 진화)

  • Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.3
    • /
    • pp.532-542
    • /
    • 2007
  • The purpose of study was to review the transition of dentition according to the evolution of man to know the background of the dental problems like hypodontia and malocclusion. Man is Kingdom Animalia, Phylum Chordata, Class Mammalia, Order Primates, Suborder Haplorrhini, Superfamily Hominoidea, Family Hominidae, Genus Homo, Species Sapiens by taxonomy. The first hominid was Australopithecus which appeared c. 4 millions of years ago and showed bipedalism and distinct dentition. Homos began with H. habilis who appeared c. 2.5 millions of years ago and made stone tools, and then H. erectus and H. neanderthalensis appeared and disappeared until H. sapiens came. The dental formula of primitive mammalians which was I3 C1 P4 M3 changed to I2 C1 P4 M3 of primitive primates, to I2 C1 P3 M3 of Haplorrhini, and to I2 C1 P2 M3 of hominoids. That of H. sapiens is changing to I2 C1 P2 M2.The box type dentition of hominoids changed to the omega type dentition of Australopithecus, and to the parabolic type of H. sapiens. The size of teeth decreased continually, especially the canine and sexual dimorphism. The dentition moved backward and downward to the cranial crown according to the increase of the brain and decrease of the jaws. It was suggested that the change of diet to the starchy foods, food processing, and the development of cooking reduced the necessity of mastication and caused the change of dentition. The future of H. sapiens who is quite a new species in the earth histroy and is now causing the mass extinction of other species is hard to see. It seems that hypodontia and malocclusion are related to the dentition change according to the evolution of man and is likely to increase.

  • PDF

Carbon Capture and CO2/CH4 Separation Technique Using Porous Carbon Materials (다공성 탄소재료를 이용한 CO2 포집 및 CO2/CH4 분리 기술)

  • Cho, Se Ho;Bai, Byong Chol;Yu, Hye-Ryeon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.343-347
    • /
    • 2011
  • Due to the strong dependence on fossil fuels within the history of human progress, it leads to disaster of the whole world like flood, shortage of water and extinction of the species. In order to curb carbon dioxide emissions, many technologies are being developed. Among them, porous carbon materials have important advantages over other absorbent, such as high surface area, thermal and chemical resistance, low cost, various pore distribution and low energy requirement for their regeneration. Carbon capture and storage (CCS) has attracted the significant research efforts for reducing green house gas emission using several absorbent and process. Moreover, the absorbent are used for the separation of bio mass gas that contains methane which is considered a promising fuel as new green energy resource. In this review, we summarized the recent studies and trend about the porous carbon materials for CCS as well as separation from the biogas.

The Responses of Particulate Phosphorus Exposed to the Fresh Water in Marine Sediment (담수화로 인한 퇴적물 내 입자성 인의 거동에 관한 실험적 연구)

  • Ji, Kwang-Hee;Jeong, Yong-Hoon;Kim, Hyun-Soo;Yang, Jae-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.84-90
    • /
    • 2009
  • We incubated marine columnar sediments at $25^{\circ}C$ for 230 days to simulate the responses of phosphorus in the sediment which was exposed to freshwater. The incubation was composed of three different treatments (FW: freshwater, FWA: freshwater under anoxic condition, and SW: seawater as a Control). Six particulate fractions of phosphorus in sediment were obtained through sequential extraction and, for comparison, phosphate concentrations in porewater and superlying water were also determined. After the incubation, evidently higher concentrations of phosphate were found in FW and FWA compared to SW. Mass extinction of living organisms in marine sediment from freshwater shock and consequent decay of their corps probably contributed such high phosphate spike in the overlying water. Higher concentrations of BD-P(lron-bound P) were found in FW compared to SW. After exposure to the freshwater, we could determine that penetration depth of dissolved oxygen in marine sediment will be deeper. A result of increases of ferrous compounds in freshwater where contained less sulfide has been obtained. Because of these phenomena, BD-P was increased in FW. On the contrary, BD-P was decreased in FWA since poor dissolved oxygen concentration. In FWA, total amount of Leachable P(SUM of LOP) has been remarkably increased through the experiment, which strongly suggested the easy conversion of the leachable P into reactive P. This experiment has shown that most of diverse P species in marine sediment were leachable under freshwater and low oxygen condition. Therefore reclamation of natural tidalfalt and consequent freshwater introduction seems to trigger the conversion of diverse P-species to leachable P in the marine sediments, which will exert high benthic load of phosphate to the overlying water.

  • PDF

The strengthening of North Atlantic Deep Water during the late Oligocene based on the benthic foraminiferal species Oridorsalis umbonatus (저서성 유공충 Oridorsalis umbonatus의 산출 상태에 기록된 후기 올리고세 북대서양 심층수의 강화)

  • Lee, Hojun;Jo, Kyoung-nam;Lim, Jaesoo
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.489-499
    • /
    • 2018
  • A series of geological events such as the formation of the Antarctic continental ice sheets, the changes in ocean circulation and a mass extinction after the onset of Oligocene has been studied as major concerns by various researches. However, paleoclimatic and paleoceanographic changes during the most period of Oligocene since the Eocene-Oligocene transition (EOT) still remains unclear. Especially, although the late Oligocene warming (LOW) has been assessed as the largest period in the paleoceanographic changes, the detailed understanding on the changed components is very low. The purpose of this study is the reconstruction of the paleoceanographic history during the late Oligocene using core sediments from IODP Expedition 342 Site U1406 performed in J-Anomaly Ridge in North Atlantic. Because North Atlantic deep water (NADW) has flowed southward through the study area since the early Oligocene, this area has been considered to an important location for studies on the changes of NADW. The core sediment analyzed in this study were deposited from about 26.0 to 26.5 Ma as evidenced by both of onboard and shore-based paleomagnetic data, and this is corresponded to the earliest period of LOW. The sediment profile can be divided into three Units (Unit 1, 2 & 3) based on the changes in both of total number and test size of Oridorsalis umbonatus as well as grain size data of clastic sediments. Unit 2 represents largest values in these three data. Because the total number, test size of O. umbonatus and grain size can be proxy records on the oxygen concentration and circulation intensity of deep water, we interpreted that Unit 2 had been deposited during the period of relatively strengthened NADW. Previous Cibicidoides spp. stable isotope results from the low latitude region of the North Atlantic also support our interpretation that is the intensified formation of NADW during the identical period. In conclusion, our results present a new evidence for the previous ideas that the causes on LOW are directly related to the changes in NADW.