DOI QR코드

DOI QR Code

A Review on Microbialites: a Korean Perspective

미생물암에 대하여: 한국적 관점

  • Lee, Jeong-Hyun (Department of Earth and Environmental Sciences, Korea University)
  • 이정현 (고려대학교 지구환경과학과)
  • Received : 2015.07.25
  • Accepted : 2015.10.13
  • Published : 2015.12.30

Abstract

Microbialites are defined as rocks formed by microbial organisms. After their first appearance around 3.5 billion years ago, microbialites occur in various depositional environments throughout geological periods. Microbial organisms form microbialites by trapping and binding detrital sediments and/or precipitating carbonate cements, resulting in formation of various microstructures and mesostructures. Four major types of microbialites are distinguished based on their mesostructures: stromatolite, thrombolite, dendrolite, and leiolite. In the geological records, occurrences of microbialites are influenced by calcium carbonate saturation of seawater and interaction of microbialites with metazoans. Stromatolites mainly flourished during the Precambrian, and diminished as level of atmospheric carbon dioxide declined. On the other hand, thrombolites, mainly formed by calcified microbes, began to flourish from the Neoproterozoic. As metazoans diversified in the Phanerozoic, proportion of the microbialites within sedimentary record declined. Since then, microbialites only occasionally flourished during the Phanerozoic, such as shortly after mass-extinction events. In the Korean Peninsula, microbialites occur in the Neoproterozoic Sangwon System, the Early Paleozoic Joseon Supergroup, and the Cretaceous Gyeongsang Supergroup, which form different shapes according to their age and depositional environments. By performing detailed studies on these Korean microbialites, it is possible to understand how microbes affected geological records and sedimentary environments, as well as their interaction with other organisms.

미생물에 의해 만들어진 퇴적암인 미생물암은 약 35억 년 전 지구 상에 최초로 등장한 이후 오늘날에도 다양한 환경에서 형성되고 있다. 미생물암은 미생물이 쇄설성 퇴적물을 고정하거나 탄산염을 침전시켜 생성되며, 그 결과 미생물암의 미세구조와 중간구조가 형성된다. 미생물암은 그 중간구조를 바탕으로 크게 스트로마톨라이트, 쓰롬볼라이트, 덴드롤라이트, 레이올라이트 등 네 가지로 분류한다. 지질 기록에서 미생물암의 분포 양상은 주로 해수 중 탄산칼슘 농도와 후생동물의 영향을 받았다. 선캄브리아 시대에 오랫동안 널리 분포하였던 스트로마톨라이트는 대기 중 이산화탄소 농도가 감소하면서 점차 줄어들었고, 이를 대신하여 신원생대부터 석회화된 미생물로 이루어진 쓰롬볼라이트가 번성하기 시작하였다. 이후 현생누대에 접어들며 다양한 후생동물이 등장함에 따라 미생물암이 퇴적기록에서 차지하는 비중은 매우 감소하였으며, 대멸종 직후 등 특정 시기에만 짧게 번성하였다. 한반도에서는 지금까지 신원생대 상원계, 전기 고생대 조선누층군, 백악기 경상누층군 등에서 미생물암이 보고된 바 있으며, 이들은 시대와 퇴적 환경에 따라 서로 다른 형태로 발달한다. 앞으로 한반도의 미생물암에 대한 추가 연구를 통해 미생물이 지질기록 및 퇴적환경에 미친 영향뿐만 아니라 미생물과 다른 생물들 사이의 상호작용을 이해할 수 있을 것이다.

Keywords

References

  1. Adachi, N., Ezaki, Y., and Liu, J., 2011, Early Ordovician Shift in Reef Construction from Microbial to Metazoan Reefs. Palaios, 26, 106-114. https://doi.org/10.2110/palo.2010.p10-097r
  2. Aitken, J.D., 1967, Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology, 37, 1163-1178.
  3. Aitken, J.D. and Narbonne, G.M., 1989, Two Occurrences of Precambrian Thrombolites from the Mackenzie Mountains, Northwestern Canada. Palaios, 4, 384-388. https://doi.org/10.2307/3514563
  4. Allwood, A.C., Grotzinger, J.P., Knoll, A.H., Burch, I.W., Anderson, M.S., Coleman, M.L., and Kanik, I., 2009, Controls on development and diversity of Early Archean stromatolites. Proceedings of the National Academy of Sciences, 106, 9548-9555.
  5. Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P., and Burch, I.W., 2006, Stromatolite reef from the Early Archaean era of Australia. Nature, 441, 714-718. https://doi.org/10.1038/nature04764
  6. Andres, M.S. and Reid, R.P., 2006, Growth morphologies of modern marine stromatolites: A case study from Highborne Cay, Bahamas. Sedimentary Geology, 185, 319-328. https://doi.org/10.1016/j.sedgeo.2005.12.020
  7. Arp, G., Reimer, A., and Reitner, J., 2001, Photosynthesisinduced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292, 1701-1704. https://doi.org/10.1126/science.1057204
  8. Badenas, B. and Aurell, M., 2010, Facies models of a shallow- water carbonate ramp based on distribution of nonskeletal grains (Kimmeridgian, Spain). Facies, 56, 89-110. https://doi.org/10.1007/s10347-009-0199-z
  9. Braga, J.C., Martin, J.M., and Riding, R., 1995, Controls on Microbial Dome Fabric Development along a Carbonate- Siliciclastic Shelf-Basin Transect, Miocene, SE Spain. Palaios, 10, 347-361. https://doi.org/10.2307/3515160
  10. Brasier, M.D., Antcliffe, J., Saunders, M., and Wacey, D., 2015, Changing the picture of Earth's earliest fossils (3.5-1.9 Ga) with new approaches and new discoveries. Proceedings of the National Academy of Sciences, 112, 4859-4864. https://doi.org/10.1073/pnas.1405338111
  11. Brayard, A., Vennin, E., Olivier, N., Bylund, K.G., Jenks, J., Stephen, D.A., Bucher, H., Hofmann, R., Goudemand, N., and Escarguel, G., 2011, Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nature Geoscience, 4, 694-697.
  12. Burne, R.V. and Moore, L.S., 1987, Microbialites: Organosedimentary Deposits of Benthic Microbial Communities. Palaios, 2, 241-254. https://doi.org/10.2307/3514674
  13. Burne, R.V., Moore, L.S., Christy, A.G., Troitzsch, U., King, P.L., Carnerup, A.M., and Hamilton, P.J., 2014, Stevensite in the modern thrombolites of Lake Clifton, Western Australia: A missing link in microbialite mineralization? Geology, 42, 575-578. https://doi.org/10.1130/G35484.1
  14. Burns, B.P., Goh, F., Allen, M., and Neilan, B.A., 2004, Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environmental Microbiology, 6, 1096-1101. https://doi.org/10.1111/j.1462-2920.2004.00651.x
  15. Chen, J. and Lee, J.-H., 2014, Current Progress on the Geological Record of Microbialites and Microbial Carbonates. Acta Geologica Sinica, 88, 260-275.
  16. Choh, S.-J., Hong, J., Sun, N., Kwon, S.-W., Park, T.-Y., Woo, J., Kwon, Y.K., Lee, D.-C., and Lee, D.-J., 2013, Early Ordovician reefs from the Taebaek Group, Korea: constituents, types, and geological implications. Geosciences Journal, 17, 139-149. https://doi.org/10.1007/s12303-013-0024-0
  17. Choi, C.G., 2007, Rod-shaped Stromatolites from the Jinju Formation, Sacheon, Gyeongsangnam-do, Korea. Journal of Korean Earth Science Society, 28, 54-63 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2007.28.1.054
  18. Choi, S.J. and Woo, K.S., 1993, Depositional Environment of the Ordovician Yeongheung Formation near Machari Area, Yeongweol, Kangweondo, Korea. Journal of the Geological Society of Korea, 29, 375-386.
  19. Chun, H.Y., Choi, H.I., Son, J.D., Oh, J.K., Kwak, Y.H., Shin, S.C., and Yun, H.S., 1990, Geological and geochemical studies on the Gyeongsang Supergroup in the Gyeongsang Basin. Korea Institute of Energy and Resources, 124p (in Korean).
  20. Couradeau, E., Benzerara, K., Gerard, E., Moreira, D., Bernard, S., Brown, G.E., and Lopez-Garcia, P., 2012, An Early-Branching Microbialite Cyanobacterium Forms Intracellular Carbonates. Science, 336, 459-462. https://doi.org/10.1126/science.1216171
  21. Dill, R.F., Shinn, E.A., Jones, A.T., Kelly, K., and Steinen, R.P., 1986, Giant subtidal stromatolites forming in normal salinity waters. Nature, 324, 55-58. https://doi.org/10.1038/324055a0
  22. Dravis, J., 1983, Hardened Subtidal Stromatolites, Bahamas. Science, 219, 385-386. https://doi.org/10.1126/science.219.4583.385
  23. Dupraz, C. and Strasser, A., 1999, Microbialites and Microencrusters in Shallow Coral Bioherms (Middle to Late Oxfordian, Swiss Jura Mountains). Facies, 40, 101-130. https://doi.org/10.1007/BF02537471
  24. Ezaki, Y., Liu, J., and Adachi, N., 2003, Earliest Triassic Microbialite Micro- to Megastructures in the Huaying Area of Sichuan Province, South China: Implications for the Nature of Oceanic Conditions after the End-Permian Extinction. Palaios, 18, 388-402. https://doi.org/10.1669/0883-1351(2003)018<0388:ETMMTM>2.0.CO;2
  25. Feldmann, M. and McKenzie, J.A., 1998, Stromatolite-Thrombolite Association in a Modern Environment, Lee Stocking Island, Bahamas. Palaios, 13, 201-212. https://doi.org/10.2307/3515490
  26. Feng, Q., Gong, Y.-M., and Riding, R., 2010, Mid-Late Devonian calcified marine algae and cyanobacteria, south China. Journal of Paleontology, 84, 569-587. https://doi.org/10.1666/09-108.1
  27. Ferris, F.G., Thompson, J.B., and Beveridge, T.J., 1997, Modern Freshwater Microbialites from Kelly Lake, British Columbia, Canada. Palaios, 12, 213-219. https://doi.org/10.2307/3515423
  28. Golubic, S., Seong-Joo, L., and Browne, K.M., 2000, Cyanobacteria: Architects of Sedimentary Structures. In Microbial Sediments (eds. R.E. Riding, S.M. Awramik), Springer-Verlag, Berlin, 57-67.
  29. Grotzinger, J.P., 1989, Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In Controls on Carbonate Platforms and Basin Development (eds. P.D. Crevello, J.L. Wilson, J.F. Sarg, J.F. Read). SEPM Special Publication 44, SEPM, Tulsa, 79-106.
  30. Grotzinger, J.P., 1990, Geochemical model for Proterozoic stromatolite decline. American Journal of Science, 290-A, 80-103.
  31. Grotzinger, J.P. and Kasting, J.F., 1993, New constraints on Precambrian ocean composition. The Journal of Geology, 235-243.
  32. Grotzinger, J.P. and Knoll, A.H., 1999, Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27, 313-358. https://doi.org/10.1146/annurev.earth.27.1.313
  33. Grotzinger, J.P., Watters, W.A., and Knoll, A.H., 2000, Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26, 334-359. https://doi.org/10.1666/0094-8373(2000)026<0334:CMITSR>2.0.CO;2
  34. Hofmann, H.J., 2000, Archaean stromatolites as microbial archives. In Microbial Sediments (eds. R.E. Riding, S.M. Awramik), Springer-Verlag, Berlin, 315-327.
  35. Hofmann, H.J., Grey, K., Hickman, A.H., and Thorpe, R.I., 1999, Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geological Society of America Bulletin, 111, 1256-1262. https://doi.org/10.1130/0016-7606(1999)111<1256:OOGCSI>2.3.CO;2
  36. Hong, J., Cho, S.-H., Choh, S.-J., Woo, J., and Lee, D.-J., 2012, Middle Cambrian siliceous sponge-calcimicrobe buildups (Daegi Formation, Korea): Metazoan buildup constituents in the aftermath of the Early Cambrian extinction event. Sedimentary Geology, 253-254, 47-57. https://doi.org/10.1016/j.sedgeo.2012.01.011
  37. Hong, J., Choh, S.-J., and Lee, D.-J., 2014, Tales from the crypt: early adaptation of cryptobiontic sessile metazoans. Palaios, 29, 95-100. https://doi.org/10.2110/palo.2014.076
  38. Hong, J., Choh, S.-J., and Lee, D.-J., 2015, Untangling intricate microbial-sponge frameworks: The contributions of sponges to Early Ordovician reefs. Sedimentary Geology, 318, 75-84. https://doi.org/10.1016/j.sedgeo.2015.01.003
  39. Howell, J., Woo, J., and Chough, S.K., 2011, Dendroid morphology and growth patterns: 3-D computed tomographic reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 335-347. https://doi.org/10.1016/j.palaeo.2010.11.013
  40. Jahnert, R.J. and Collins, L.B., 2011, Significance of subtidal microbial deposits in Shark Bay, Australia. Marine Geology, 286, 106-111. https://doi.org/10.1016/j.margeo.2011.05.006
  41. James, N.P. and Wood, R., 2010, Reefs. In Facies Models 4 (eds. N.P. James, R.W. Dalrymple), Geological Association of Canada, St. John's, 421-447.
  42. Kah, L.C. and Grotzinger, J.P., 1992, Early Proterozoic (1.9 Ga) Thrombolites of the Rocknest Formation, Northwest Territories, Canada. Palaios, 7, 305-315. https://doi.org/10.2307/3514975
  43. Kalkowsky, E., 1908, Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift der Deutschen Geologischen Gesellschaft, 60, 68-125.
  44. Kennard, J.M. and James, N.P., 1986, Thrombolites and Stromatolites: Two Distinct Types of Microbial Structures. Palaios, 1, 492-503. https://doi.org/10.2307/3514631
  45. Kershaw, S., Crasquin, S., Li, Y., Collin, P.Y., Forel, M.B., Mu, X., Baud, A., Wang, Y., Xie, S., Maurer, F., and Guo, L., 2012, Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis. Geobiology, 10, 25-47. https://doi.org/10.1111/j.1472-4669.2011.00302.x
  46. Kershaw, S., Zhang, T.S., and Lan, G.Z., 1999, A ?microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 146, 1-18. https://doi.org/10.1016/S0031-0182(98)00139-4
  47. Kim, D.H. and Choi, D.K., 2000, Lithostratigraphy and biostratigraphy of the Mungok Formation (Lower Ordovician), Yongwol, Korea. Geosciences Journal, 4, 301-311. https://doi.org/10.1007/BF02914039
  48. Kim, J.-Y. and Kim, T.-S., 1999, Occurrence and Geological Significance of Stromatolites from the Precambrian Strata in the Socheong Island, Incheon, Korea. Journal of Korean Earth Science Society, 20, 111-125.
  49. Kim, J.-Y. and Han, S.H., 2010, Geology and Stromatolite Fossil Localities of Socheong Island, Korea: An Introductory Review. Journal of Korean Earth Science Society, 31, 8-17 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2010.31.1.008
  50. Kim, Y.-H.G., Rhee, C.W., Woo, J., and Park, T.-Y.S., 2014, Depositional systems of the Lower Ordovician Mungok Formation in Yeongwol, Korea: implications for the carbonate ramp facies development. Geosciences Journal, 18, 397-417. https://doi.org/10.1007/s12303-014-0033-7
  51. Kong, D.-Y. and Lee, S.-J., 2009, Reconsideration of the Natural Monument No. 413 Mungokri Stromatolite, Yeongwol, Korea. Journal of the Geological Society of Korea, 45, 711-723 (in Korean with English abstract).
  52. Kong, D.-Y. and Lee, S.-J., 2013, Possibility for Heliotropism from Inclined Columns of Stromatolites, Socheong Island, Korea. Journal of the Korean Earth Science Society, 34, 381-392. https://doi.org/10.5467/JKESS.2013.34.5.381
  53. Kruse, P.D. and Reitner, J.R., 2014, Northern Australian microbial-metazoan reefs after the mid-Cambrian mass extinction. Memoirs of the Association of Australasian Palaeontologists, 45, 31-53.
  54. Kwon, Y.K., Lee, D.J., Choi, D.K., and Chough, S.K., 2003, Lower Ordovician sponge bioherms in the Makkol Formation, Taebaeksan Basin, Mideast Korea. Facies, 48, 79-90. https://doi.org/10.1007/BF02667531
  55. Last, F.M., Last, W.M., and Halden, N.M., 2010, Carbonate microbialites and hardgrounds from Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada. Sedimentary Geology, 225, 34-49. https://doi.org/10.1016/j.sedgeo.2010.01.006
  56. Laval, B., Cady, S.L., Pollack, J.C., McKay, C.P., Bird, J.S., Grotzinger, J.P., Ford, D.C., and Bohm, H.R., 2000, Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature, 407, 626-629. https://doi.org/10.1038/35036579
  57. Lee, J.-H., Chen, J., Choh, S.-J., Lee, D.-J., Han, Z., and Chough, S.K., 2014a, Furongian (late Cambrian) spongemicrobial maze-like reefs in the North China Platform. Palaios, 29, 27-37. https://doi.org/10.2110/palo.2013.050
  58. Lee, J.-H., Chen, J., and Chough, S.K., 2015a, The middle-late Cambrian reef transition and related geological events: a review and new view. Earth-Science Reviews, 145, 66-84. https://doi.org/10.1016/j.earscirev.2015.03.002
  59. Lee, J.-H., Hong, J., Woo, J., Oh, J.-R., Lee, D.-J., and Choh, S.-J., 2015b, Reefs in the Early Paleozoic Taebaek Group, Korea: a review. Acta Geologica Sinica, accepted.
  60. Lee, J.-H., Lee, H.S., Chen, J., Woo, J., and Chough, S.K., 2014b, Calcified microbial reefs in the Cambrian Series 2 of the North China Platform: implications for the evolution of Cambrian calcified microbes. Palaeogeography, Palaeoclimatology, Palaeoecology, 403, 30-42. https://doi.org/10.1016/j.palaeo.2014.03.020
  61. Lee, J.-H., Woo, J., and Lee, D.-J., 2015c, The earliest reefbuilding anthaspidellid sponge Rankenella zhangxianensis n. sp. from the Zhangxia Formation (Cambrian Series 3), Shandong Province, China. Journal of Paleontology, accepted.
  62. Lee, K.C. and Woo, K.S., 1996, Lacustrine stromatolites and diagenetic history of carbonate rocks of Chinju Formation in Kunwi area, Kyongsangbukdo, Korea. Journal of the Geological Society of Korea, 32, 351-365.
  63. Lee, K.C., Woo, K.S., Paik, K.H., and Choi, S.J., 1991, Depositional Environments and Diagenetic History of the Panyawol, Hwasan, and Shinyangdong Formations, Kyongsang Supergroup, Korea*-With Emphasis on Carbonate Rocks-. Journal of the Geological Society of Korea, 27, 471-492.
  64. Lee, S.-J., Kim, J.-Y., and Lee, K.C., 2003, Bacterial microfossils from Precambrian sedimentary rocks, Socheong Island, Korea. Journal of the Geological Society of Korea, 39, 171-182 (in Korean with English abstract).
  65. Lee, S.-J. and Kong, D., 2004, Rod-shaped stromatolites from the Jinju Formation, Namhae, Gyeongsangnam-do, Korea. Journal of the Geological Society of Korea, 40, 13-26 (in Korean with English abstract).
  66. Lee, Y.I. and Choi, D.K., 1987, Sedimentology of the Dumugol Formation (Lower Ordovician) in the Vicinity of the Dongjeom Station, Taebaeg City: a preliminary study. Journal of the Geological Society of Korea, 23, 331-337 (in Korean with English abstract).
  67. Leinfelder, R., Nose, M., Schmid, D., and Werner, W., 1993, Microbial crusts of the late jurassic: Composition, palaeoecological significance and importance in reef construction. Facies, 29, 195-229. https://doi.org/10.1007/BF02536929
  68. Leinfelder, R.R., Krautter, M., Laternser, D.-G.R., Nose, M., Schmid, D.U., Schweigert, G., Werner, W., Keupp, H., Brugger, D.-G.H., Herrmann, R., Rehfeld-Kiefer, U., Schroeder, J.H., Reinhold, C., Koch, R., Zeiss, A., Schweizer, V., Christmann, H., Menges, G., and Luterbacher, H., 1994, The origin of Jurassic reefs: current research developments and results. Facies, 31, 1-56. https://doi.org/10.1007/BF02536932
  69. Lepot, K., Benzerara, K., Brown, G.E., and Philippot, P., 2008, Microbially influenced formation of 2,724-millionyear- old stromatolites. Nature Geoscience, 1, 118-121. https://doi.org/10.1038/ngeo107
  70. Lowe, D.R., 1994, Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22, 387-390. https://doi.org/10.1130/0091-7613(1994)022<0387:AOODSO>2.3.CO;2
  71. Mankiewicz, C., 1992, Proterozoic and Early Cambrian calcareous algae. In The Proterozoic Biosphere: A Multidisciplinary Study (eds. J.W. Schopf, C. Klein), Cambridge University Press, Cambridge, 359-367.
  72. Moore, L.S. and Burne, R.V., 1994, The modern thrombolites of Lake Clifton, western Australia. In Phanerozoic stromatolites II (eds. J. Bertrand-Sarfati, C.L.V. Monty), Kluwer Academic, Netherlands, 3-29.
  73. Nehza, O. and Woo, K.S., 2006, The effect of subaerial exposure on the morphology and microstructure of stromatolites in the Cretaceous Sinyangdong Formation, Gyeongsang Supergroup, Korea. Sedimentology, 53, 1121-1133. https://doi.org/10.1111/j.1365-3091.2006.00804.x
  74. Nehza, O., Woo, K.S., and Lee, K.C., 2009, Combined textural and stable isotopic data as proxies for the mid-Cretaceous paleoclimate: A case study of lacustrine stromatolites in the Gyeongsang Basin, SE Korea. Sedimentary Geology, 214, 85-99. https://doi.org/10.1016/j.sedgeo.2008.03.012
  75. Noffke, N. and Awramik, S.M., 2013, Stromatolites and MISS-Differences between relatives. GSA Today, 23, 4-9.
  76. Noffke, N., Gerdes, G., Klenke, T., and Krumbein, W.E., 2001, Microbially Induced Sedimentary Structures-A New Category Within the Classification of Primary Sedimentary Structures. Journal of Sedimentary Research, 71, 649-656. https://doi.org/10.1306/2DC4095D-0E47-11D7-8643000102C1865D
  77. Oh, J.-R., Choh, S.-J., and Lee, D.-J., 2015, First report of Cystostroma (Stromatoporoidea; Ordovician) from Sino-Korean Craton. Geosciences Journal, 19, 25-31. https://doi.org/10.1007/s12303-014-0035-5
  78. Olivier, N., Hantzpergue, P., Gaillard, C., Pittet, B., Leinfelder, R.R., Schmid, D.U., and Werner, W., 2003, Microbialite morphology, structure and growth: a model of the Upper Jurassic reefs of the Chay Peninsula (Western France). Palaeogeography, Palaeoclimatology, Palaeoecology, 193, 383-404. https://doi.org/10.1016/S0031-0182(03)00236-0
  79. Olivier, N., Lathuilière, B., and Thiry-Bastien, P., 2006, Growth models of Bajocian coral-microbialite reefs of Chargey-lès-Port (eastern France): palaeoenvironmental interpretations. Facies, 52, 113-127. https://doi.org/10.1007/s10347-005-0022-4
  80. Omelon, C.R., Brady, A.L., Slater, G.F., Laval, B., Lim, D.S.S., and Southam, G., 2013, Microstructure variability in freshwater microbialites, Pavilion Lake, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 62-70. https://doi.org/10.1016/j.palaeo.2013.08.017
  81. Paik, I.S., 1987, Depositional Environments of the Middle Ordovician Maggol Formation, Southern Part of the Baegunsan Syncline Area. Journal of the Geological Society of Korea, 23, 360-373.
  82. Paik, I.S., 2005, The oldest record of microbial-caddisfly bioherms from the Early Cretaceous Jinju Formation, Korea: occurrence and palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 218, 301-315. https://doi.org/10.1016/j.palaeo.2004.12.020
  83. Paik, I.S. and Kim, H.J., 2014, Roll-up clasts in the Cretaceous Haman Formation, Korea: Occurrences, origin and paleoenvironmental implications. Journal of the Geological Society of Korea, 50, 269-276 (in Korean with English abstract).
  84. Paik, I.S., Woo, K.S., and Chung, G.S., 1991, Stratigraphic, Sedimentologic and Paleontologic Investigation of the Paleozoic Sedimentary Rocks in Yeongweol and Gabsan Areas: Depositional Environments of the Lower Ordovician Mungok Formation in the Vicinity of Yeongweol. Journal of the Geological Society of Korea, 27, 357-370.
  85. Pak, M.H., 1986, On stromatolite fossils found in the Sangwon System of the Sangwon-Yonsan region. Geology and Geography, 4, 14-20 (in Korean with English abstract).
  86. Papineau, D., Walker, J.J., Mojzsis, S.J., and Pace, N.R., 2005, Composition and Structure of Microbial Communities from Stromatolites of Hamelin Pool in Shark Bay, Western Australia. Applied and Environmental Microbiology, 71, 4822-4832. https://doi.org/10.1128/AEM.71.8.4822-4832.2005
  87. Parcell, W.C., 2002, Sequence stratigraphic controls on the development of microbial fabrics and growth forms - implications for reservior quality distribution in the Upper Jurassic (Oxfordian) Smackover Formation, eastern Gulf coast, USA. Carbonates and Evaporites, 17, 166-181. https://doi.org/10.1007/BF03176483
  88. Paul, J. and Peryt, T.M., 2000, Kalkowsky's stromatolites revisited (Lower Triassic Buntsandstein, Harz Mountains, Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 161.
  89. Penny, A.M., Wood, R., Curtis, A., Bowyer, F., Tostevin, R., and Hoffman, K.H., 2014, Ediacaran metazoan reefs from the Nama Group, Namibia. Science, 344, 1504-1506. https://doi.org/10.1126/science.1253393
  90. Pinti, D.L., Mineau, R., and Clement, V., 2009, Hydrothermal alteration and microfossil artefacts of the 3,465-million-year-old Apex chert. Nature Geoscience, 2, 640-643. https://doi.org/10.1038/ngeo601
  91. Pratt, B.R., 1984, Epiphyton and Renalcis - diagenetic microfossils from calcification of coccoid blue-green algae. Journal of Sedimentary Petrology, 54, 948-971.
  92. Reid, R.P., James, N.P., Macintyre, I.G., Dupraz, C.P., and Burne, R.V., 2003, Shark Bay Stromatolites: Microfabrics and Reinterpretation of Origins. Facies, 49, 299-324.
  93. Reid, R.P., Macintyre, I.G., Browne, K.M., Steneck, R.S., and Miller, T., 1995, Modern Marine Stromatolites in the Exuma Cays, Bahamas: Uncommonly Common. Facies, 33, 1-18. https://doi.org/10.1007/BF02537442
  94. Reitner, J., 1993, Modern Cryptic Microbialite/Metazoan Facies from Lizard Island (Great Barrier Reef, Australia) Formation and Concepts. Facies, 29, 3-40. https://doi.org/10.1007/BF02536915
  95. Ri, S.R. and Om, H.Y., 1996, Middle-Upper Proterozoic Era. In Gelogy of Korea (eds. R.J. Paek, H.S. Kang, G.P. Jon), Foreign Languages Books Publishing House, Pyongyang, 52-79.
  96. Riding, R., 1977, Calcified Plectonema (blue-green algae), a recent example of Girvanella from Aldabra Atoll. Palaeontology, 20, 33-46.
  97. Riding, R., 1991a, Calcified cyanobacteria. In Calcareous Algae and Stromatolites (ed. R. Riding), Springer-Verlag, Berlin, 55-87.
  98. Riding, R., 1991b, Classification of microbial carbonates. In Calcareous Algae and Stromatolites (ed. R. Riding), Springer-Verlag, Berlin, 21-51.
  99. Riding, R., 2000, Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179-214. https://doi.org/10.1046/j.1365-3091.2000.00003.x
  100. Riding, R., 2001, Calcified algae and bacteria. In Ecology of the Cambrian Radiation (eds. A.Y. Zhuravlev, R. Riding), Columbia University Press, New York, 445-473.
  101. Riding, R., 2006a, Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4, 299-316. https://doi.org/10.1111/j.1472-4669.2006.00087.x
  102. Riding, R., 2006b, Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185, 229-238. https://doi.org/10.1016/j.sedgeo.2005.12.015
  103. Riding, R., 2008, Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geologia Croatica, 61, 73-103.
  104. Riding, R., 2011a, Calcified cyanobacteria. In Encylopedia of Geobiology (eds. J. Reitner, V. Thiel), Springer, Heidelberg, 211-223.
  105. Riding, R., 2011b, Microbialites, stromatolites, and thrombolites. In Encylopedia of Geobiology (eds. J. Reitner, V. Thiel), Springer, Heidelberg, 635-654.
  106. Riding, R., 2011c, Reefal microbial crusts. In Encylopedia of Geobiology (eds. J. Reitner, V. Thiel), Springer, Heidelberg, 911-915.
  107. Riding, R. and Liang, L., 2005, Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 101-115. https://doi.org/10.1016/j.palaeo.2004.11.018
  108. Riding, R., Liang, L., and Braga, J.C., 2014, Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs. Geobiology, 12, 387-405. https://doi.org/10.1111/gbi.12097
  109. Riding, R. and Voronova, L., 1982, Recent freshwater oscillatoriacean analogue of the Lower Palaeozoic calcareous alga Angulocellularia. Lethaia, 15, 105-114. https://doi.org/10.1111/j.1502-3931.1982.tb01129.x
  110. Rowland, S.M. and Shapiro, R.S., 2002, Reef patterns and environmental influences in the Cambrian and earliest Ordovician. In Phanerozoic Reef Patterns (eds. W. Kiessling, E. Flugel, J. Golonka). SEPM Special Publication 72, SEPM, Tulsa, 95-128.
  111. Russell, J.A., Brady, A.L., Cardman, Z., Slater, G.F., Lim, D.S., and Biddle, J.F., 2014, Prokaryote populations of extant microbialites along a depth gradient in Pavilion Lake, British Columbia, Canada. Geobiology, 12, 250-264. https://doi.org/10.1111/gbi.12082
  112. Săsăran, E., Bucur, I.I., Pleş, G., and Riding, R., 2014, Late Jurassic Epiphyton-like cyanobacteria: Indicators of longterm episodic variation in marine bioinduced microbial calcification? Palaeogeography, Palaeoclimatology, Palaeoecology, 401, 122-131. https://doi.org/10.1016/j.palaeo.2014.02.026
  113. Schopf, J.W., 1994, The oldest known records of life: Early Archean stromatolites, microfossils, and organic matter. In Early life on Earth (ed. S. Bengston). Nobel Symposium 84, Columbia University Press, New York, 193-206.
  114. Schopf, J.W., Kudryavtsev, A.B., Czaja, A.D., and Tripathi, A.B., 2007, Evidence of Archean life: Stromatolites and microfossils. Precambrian Research, 158, 141-155. https://doi.org/10.1016/j.precamres.2007.04.009
  115. Schubert, J.K. and Bottjer, D.J., 1992, Early Triassic stromatolites as post-mass extinction disaster forms. Geology, 20, 883-886. https://doi.org/10.1130/0091-7613(1992)020<0883:ETSAPM>2.3.CO;2
  116. Seong-Joo, L., Browne, K.M., and Golubic, S., 2000, On stromatolite lamination. In Microbial Sediments (eds. R.E. Riding, S.M. Awramik), Springer-Verlag, Berlin, 16-24.
  117. Shapiro, R.S., 2000, A comment on the systematic confusion of thrombolites. Palaios, 15, 166-169. https://doi.org/10.1669/0883-1351(2000)015<0166:ACOTSC>2.0.CO;2
  118. Sheehan, P.M. and Harris, M.T., 2004, Microbialite resurgence after the Late Ordovician extinction. Nature, 430, 75-78. https://doi.org/10.1038/nature02654
  119. Shen, J.-W., Yu, C.-M., and Bao, H.-M., 1997, A late-devonian (Famennian) Renalcis-Epiphyton reef at Zhaijiang, Guilin, South China. Facies, 37, 195-209. https://doi.org/10.1007/BF02537379
  120. Shen, J., Webb, G., and Jell, J., 2008, Platform margins, reef facies, and microbial carbonates; a comparison of Devonian reef complexes in the Canning Basin, Western Australia, and the Guilin region, South China. Earth-Science Reviews, 88, 33-59. https://doi.org/10.1016/j.earscirev.2008.01.002
  121. Shen, J., Webb, G.E., and Qing, H., 2010, Microbial mounds prior to the Frasnian-Famennian mass extinctions, Hantang, Guilin, South China. Sedimentology, 57, 1615-1639. https://doi.org/10.1111/j.1365-3091.2010.01158.x
  122. Sim, M.S. and Lee, Y.I., 2006, Sequence stratigraphy of the Middle Cambrian Daegi Formation (Korea), and its bearing on the regional stratigraphic correlation. Sedimentary Geology, 191, 151-169. https://doi.org/10.1016/j.sedgeo.2006.03.016
  123. Turner, E.C., James, N.P., and Narbonne, G.M., 2000, Taphonomic Control on Microstructure in Early Neoproterozoic Reefal Stromatolites and Thrombolites. Palaios, 15, 87-111. https://doi.org/10.1669/0883-1351(2000)015<0087:TCOMIE>2.0.CO;2
  124. Turner, E.C., Narbonne, G.M., and James, N.P., 1993, Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada. Geology, 21, 259-262. https://doi.org/10.1130/0091-7613(1993)021<0259:NRMFTL>2.3.CO;2
  125. Um, S.H., Choi, H.I., Son, J.D., Oh, J.H., Kwak, Y.H., Shin, S.C., and Yun, H.S., 1983, Geological and geochemical studies on the Gyeongsang Supergroup in the Gyeongsang Basin. Korea Institute of Energy Resources Bulletin 36, 124p (in Korean).
  126. Webb, G.E. and Kamber, B.S., 2011, Trace Element Geochemistry as a Tool for Interpreting Microbialites. In Earliest Life on Earth: Habitats, Environments and Methods of Detection (eds. S.D. Golding, M. Glikson), Springer, Netherlands, 127-170.
  127. Webby, B.D., 2002, Patterns of Ordovician reef development. In Phanerozoic Reef Patterns (eds. W. Kiessling, E. Flügel, J. Golonka). SEPM Special Publication 72, SEPM, Tulsa, 129-179.
  128. Woo, J. and Chough, S.K., 2010, Growth patterns of the Cambrian microbialite: Phototropism and speciation of Epiphyton. Sedimentary Geology, 229, 1-8. https://doi.org/10.1016/j.sedgeo.2010.05.006
  129. Woo, J., Chough, S.K., and Han, Z., 2008, Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong Province, China. Palaios, 23, 55-64. https://doi.org/10.2110/palo.2006.p06-103r
  130. Woo, K.S., 1999, Cyclic tidal successions of the Middle Ordovician Maggol Formation in the Taebaeg area, Kangwondo, Korea. Geosciences Journal, 3, 123-140. https://doi.org/10.1007/BF02910269
  131. Woo, K.S., Khim, B.K., Yoon, H.S., and Lee, K.C., 2004, Cretaceous lacustrine stromatolites in the Gyeongsang Basin (Korea): Records of cyclic change in paleohydrological condition. Geosciences Journal, 8, 179-184. https://doi.org/10.1007/BF02910193
  132. Wu, Y.S., Yu, G.L., Li, R.H., Song, L.R., Jiang, H.X., Riding, R., Liu, L.J., Liu, D.Y., and Zhao, R., 2014, Cyanobacterial fossils from 252 Ma old microbialites and their environmental significance. Scientific Reports, 4, 3820.
  133. Xie, S., Pancost, R.D., Wang, Y., Yang, H., Wignall, P.B., Luo, G., Jia, C., and Chen, L., 2010, Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis. Geology, 38, 447-450. https://doi.org/10.1130/G30769.1
  134. Yamamoto, A., Lee, K.-C., and Isozaki, Y., 2011, Lower Cretaceous Stromatolites in Far East Asia: Examples in Japan and Korea. In STROMATOLITES: Interaction of Microbes with Sediments (eds. V.C. Tewari, J. Seckbach). Cellular Origin, Life in Extreme Habitats and Astrobiology 18, Springer, Amsterdam, 273-287.
  135. Yin, L.-M., 1990, New data on Late Proterozoic microfossils in northern Korean Peninsula. Acta Palaeontologica Sinica, 29, 460-466.
  136. Yoo, C.M. and Lee, Y.I., 1997, Depositional cyclicity of the Middle Ordovician Yeongheung Formation, Korea. Carbonates and Evaporites, 12, 192-203. https://doi.org/10.1007/BF03175417
  137. Zhuravlev, A.Y., 1996, Reef ecosystem recovery after the Early Cambrian extinction. In Biotic Recovery from Mass Extinction Events (ed. M.B. Hart). Geological Society of London Special Publications 102, Geological Society of London, Oxford, 79-96.