DOI QR코드

DOI QR Code

The strengthening of North Atlantic Deep Water during the late Oligocene based on the benthic foraminiferal species Oridorsalis umbonatus

저서성 유공충 Oridorsalis umbonatus의 산출 상태에 기록된 후기 올리고세 북대서양 심층수의 강화

  • Lee, Hojun (Division of Geology and Geophysics & Critical zone Frontier Research Laboratory (CFRL), Kangwon National University) ;
  • Jo, Kyoung-nam (Division of Geology and Geophysics & Critical zone Frontier Research Laboratory (CFRL), Kangwon National University) ;
  • Lim, Jaesoo (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
  • 이호준 (강원대학교 지질지구물리학부) ;
  • 조경남 (강원대학교 지질지구물리학부) ;
  • 임재수 (한국지질자원연구원 지질환경연구본부)
  • Received : 2018.08.22
  • Accepted : 2018.10.02
  • Published : 2018.10.31

Abstract

A series of geological events such as the formation of the Antarctic continental ice sheets, the changes in ocean circulation and a mass extinction after the onset of Oligocene has been studied as major concerns by various researches. However, paleoclimatic and paleoceanographic changes during the most period of Oligocene since the Eocene-Oligocene transition (EOT) still remains unclear. Especially, although the late Oligocene warming (LOW) has been assessed as the largest period in the paleoceanographic changes, the detailed understanding on the changed components is very low. The purpose of this study is the reconstruction of the paleoceanographic history during the late Oligocene using core sediments from IODP Expedition 342 Site U1406 performed in J-Anomaly Ridge in North Atlantic. Because North Atlantic deep water (NADW) has flowed southward through the study area since the early Oligocene, this area has been considered to an important location for studies on the changes of NADW. The core sediment analyzed in this study were deposited from about 26.0 to 26.5 Ma as evidenced by both of onboard and shore-based paleomagnetic data, and this is corresponded to the earliest period of LOW. The sediment profile can be divided into three Units (Unit 1, 2 & 3) based on the changes in both of total number and test size of Oridorsalis umbonatus as well as grain size data of clastic sediments. Unit 2 represents largest values in these three data. Because the total number, test size of O. umbonatus and grain size can be proxy records on the oxygen concentration and circulation intensity of deep water, we interpreted that Unit 2 had been deposited during the period of relatively strengthened NADW. Previous Cibicidoides spp. stable isotope results from the low latitude region of the North Atlantic also support our interpretation that is the intensified formation of NADW during the identical period. In conclusion, our results present a new evidence for the previous ideas that the causes on LOW are directly related to the changes in NADW.

올리고세의 시작과 함께 발생된 남극 대륙빙하의 형성, 해류 시스템 변화, 고생물 멸종 등 일련의 사건들은 현재까지 지질학자들로부터 매우 주요한 관심을 받아왔다. 하지만 이에 반해 에오세-올리고세 전이기(Eocene-Oligocene transition; EOT) 이후 올리고세 대부분의 기간 동안 발생된 고기후 고해양학적 변화에 대해서는 아직까지도 연구가 미흡한 상태이다. 특히, 후기 올리고세 온난화(late Oligocene warming; LOW)는 올리고세 동안 발생된 고기후 고해양학적 변화에 있어 가장 큰 규모의 사건 중 하나로 인식되고 있지만, 이 시기에 발생된 구체적인 변화 요소에 대한 이해는 매우 부족한 실정이다. 이번 연구는 IODP Expedition 342를 통해 북대서양 J-Anomaly Ridge에서 획득한 시추코어 퇴적물을 이용해 후기 올리고세 온난화 동안 어떤 고해양학적 변화가 발생되었는지 알아보기 위해 수행되었다. 연구지역은 북대서양 심층수(North Atlantic deep water; NADW)에 의해 직접적으로 영향을 받고 있기 때문에 과거 NADW의 변화를 연구하기에 적합한 곳으로 잘 알려져 있다. 고지자기 층서모델을 이용해 산출된 퇴적물의 연대는 약 26.0~26.5 Ma로 LOW의 초반부에 해당되는 시기이다. 이 퇴적물 시료로부터 산출되는 저서성 유공충의 한 종인 Oridorsalis umbonatus의 각질 크기 자료와 입도분석 결과는 서로 매우 유사한 변화경향성을 보여주는 것으로 나타났다. 이러한 연구 결과를 바탕으로 해당 시 추코어 퇴적물은 총 3개의 구간(Unit 1, 2, 3)으로 나누어지며, 그 중 Unit 2는 가장 큰 각질의 O. umbonatus가 산출되는 동시에 퇴적물 입자 크기도 가장 큰 것으로 나타났다. 또한 O.umbonatus의 개체수 역시 Unit 2에서 가장 높은 것으로 나타났다. O. umbonatus의 개체수, 각질 크기 변화, 입도 변화는 산소농도와 심층수 순환 강도의 프록시로 활용될 수 있기 때문에 이번 연구에서는 Unit 2가 퇴적된 시기 동안 NADW의 세기가 가장 강했던 것으로 해석하였다. 이와 같이 LOW 초기 동안 발생된 NADW의 강화는 기존 북대서양 저위도 지역의 Cibicidoides spp. 산소 및 탄소안정동위원소 자료를 통해서도 확인할 수 있다. 이번 연구의 결과는 LOW의 시작 원인이 NADW의 강화와 같은 고해양학적 변화와 연관되어 있다는 기존 연구결과를 지지하는 새로운 증거를 제시해준다.

Keywords

Acknowledgement

Grant : 장기적 한반도 온난화 평가를 위한 Eemian 간빙기 기후변화 복원

Supported by : 한국연구재단(NRF)

References

  1. Balsama, W.L., Deatonb, B.C. and Damutha, J.E., 1999, Evaluating optical lightness as a proxy for carbonate content in marine sediment cores. Marine Geology, 161, p. 141-153. https://doi.org/10.1016/S0025-3227(99)00037-7
  2. Bianchi, G.G. and McCave, I.N., 1999, Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature, 397, p. 515-517. https://doi.org/10.1038/17362
  3. Boltovskoy, E., Watanabe, S., Totah, V.I. and Vera Ocampo, J., 1992, Cenozoic benthic bathyal foraminifers of DSDP Site 548 (North Atlantic). Micropaleontology, 38(2), p. 138-207.
  4. Borrelli, C., Cramer, B.S. and Katz, M.E., 2014, Bipolar Atlantic deepwater circulation in the middle-late Eocene: Effects of Southern Ocean gateway openings. Paleoceanography, 29, doi:10.1002/2012PA002444.
  5. Coxall, H.K., Wilson, P.A., Palike, H., Lear, C.H. and Backman, J., 2005, Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433, 53. https://doi.org/10.1038/nature03135
  6. Cramer, B.S., Toggweiler, J.R., Wright, J.D., Katz, M.E. and Miller, K.G., 2009, Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography, 24, PA4216, doi:10.1029/2008PA001683
  7. Curry, W.B., Shackleton, N.J. and Richter, C., 1995, LEG 154 introduction. Proceedings of the Ocean Drilling Program, Initial Reports, 154.
  8. DeConto, R.M. and Pollard, D., 2003, Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421, doi: 10.1038/nature01290
  9. Elsworth, G., Galbraith, E., Halverson, G. and Yang, S., 2017, Enhanced weathering and $CO_2$ drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation. Nature geoscience, 10, doi:10.1038/NGEO2888.
  10. Expedition 342 Scientists, 2012, Paleogene Newfoundland sediment drifts. IODP Preliminary. Report 342, doi: 10.2204/iodp.pr.342.2012.
  11. Geslin, E., Heinz, P., Jorissen, F. and Hemleben, C., 2004, Migratory responses of deep-sea benthic foraminifera to variable oxygen conditions: laboratory investigations. Marine Micropaleontology, 53, p. 227-243. https://doi.org/10.1016/j.marmicro.2004.05.010
  12. Gooday, A.J., 2003, Benthic foraminifera (protista) as tools in deep-water palaeoceanography: Environmental influences on faunal characteristics. Advances in Marine Biology, 46, p. 1-90.
  13. Gooday, A.J. and Rathburn, A.E., 1999, Temporal variability in living deep-sea benthic foraminifera: a review. Earth Science Review, 46, p. 187-212. https://doi.org/10.1016/S0012-8252(99)00010-0
  14. Gradstein, F.M., Ogg, J.G., Schmitz, M. and Ogg, G., 2012, The geologic time scale 2012. Elsevier.
  15. Hauptvogel, D.W., Pekar, S.F. and Pincay, V., 2017, Evidence for a heavily glaciated Antarctica during the Late Oligocene "warming" (27.8-24.5 Ma): Stable isotope records from ODP Site 690. Paleoceanogarphy, 32(4), p. 384-396. https://doi.org/10.1002/2016PA002972
  16. Henrich, R., Baumann, K.H., Huber, R. and Meggers, H., 2002, Carbonate preservation records of the past 3 Myr in the Norwegian-Greenland Sea and the northern North Atlantic: implications for the history of NADW production. Marine Geology, 184, p. 17-39. https://doi.org/10.1016/S0025-3227(01)00279-1
  17. Kaiho, K., 1999, Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen index (BFOI). Marine micropaleontology, 37, p. 67-76. https://doi.org/10.1016/S0377-8398(99)00008-0
  18. Kaiho, K., Takeda, K., Petrizzo, M.R. and Zachos, J.C., 2006, Anomalous shifts in tropical Pacific planktonic and benthic foraminiferal test size during the Paleocene-Eocene thermal maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 237, p. 456-464. https://doi.org/10.1016/j.palaeo.2005.12.017
  19. Katz, M.E., Cramer, B.S., Toggweiler, J.R., Esmay, G., Liu, C., Miller, K.G., Rosenthal, Y., Wade, B.S. and Wright, J.D., 2011, Impact of Antarctic Circumpolar Current development on late Paleogene ocean structure. Science 332, 1076-1079, doi: 10.1126/science.1202122.
  20. Kennett, J.P., 1977, Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and their impact on global paleoceanography. Journal of Geophysical Research, 82, p. 3843-3859. https://doi.org/10.1029/JC082i027p03843
  21. Lagabrielle, Y., Godderis, Y., Donnadieu, Y., Malavieille, J. and Suarez, M., 2009, The tectonic history of Drake Passage and its possible impacts on global climate. Earth and Planetary Science Letters, 279, p. 197-211. https://doi.org/10.1016/j.epsl.2008.12.037
  22. Mackensen, A., Schmiedl, G., Harloff, J. and Giese, M., 1995, Deep-sea foraminifera in the South Atlantic Ocean: Ecology and assemblage generation. Micropaleontology, 41(4), p. 342-358. https://doi.org/10.2307/1485808
  23. Miller, K.G., Wright, J.D., Katz, M.E., Wade, B.S., Browning, J.V., Cramer, B.S. and Rosenthal, Y., 2009, Climate threshold at the Eocene-Oligocene transition: Antarctic ice sheet influence on ocean circulation. in Koeberl, C. and Montanari, A., eds., The Late Eocene Earth-Hothouse, Icehouse, and Impacts: Geological Society of America Special Paper, 452, p. 169-178, doi:10.1130/2009.2452(11).
  24. Murray, J.W., 1988, Neogene bottom water-masses and benthic foraminifera in the NE Atlantic Ocean. Journal of the Geological Society, London, 145, p. 125-132. https://doi.org/10.1144/gsjgs.145.1.0125
  25. Ohkushi, K., Thomas, E. and Kawahata, H., 2000, Abyssal benthic foraminifera from the northwestern Pacific (Shatsky Rise) during the last 298 kyr. Marine Micropaleontology, 38.
  26. Palike, H., Frazier, J. and Zachos, J.C., 2006a, Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise. Quaternary Science Reviews, 25, p. 3138-3149. https://doi.org/10.1016/j.quascirev.2006.02.011
  27. Palike, H., Lyle, M.W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton, G., Anderson, L., Backman, J., Baldauf, J., Beltran, C., Bohaty, S.M., Bown, P., Busch, W., Channell, J.E.T., Chun, C.O.J., Delaney, M., Dewangan, P., Jones, T.D., Edgar, K.M., Evans, H., Fitch, P., Foster, G.L., Gussone, N., Hasegawa, H., Hathorne, Ed C., Hayashi, H., Herrle, J.O., Holbourn, A., Hovan, S., Hyeong, K., Iijima, K., Ito, T., Kamikuri, S., Kimoto, K., Kuroda, J., Leon-Rodriguez, L., Malinverno, A., Moore Jr, T.C., Murphy, B.H., Murphy, D.P., Nakamura, H., Ogane, K., Ohneiser, C., Richter, C., Robinson, R., Rohling, E.J., Romero, O., Sawada, K., Scher, H., Schneider, L., Sluijs, A., Takata, H., Tian, J., Tsujimoto, A., Wade, B.S., Westerhold, T., Wilkens, R., Williams, T., Wilson, P.A., Yamamoto, Y., Yamamoto, S., Yamazaki, T. and Zeebe, R.E., 2012, A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, 488.
  28. Palike, H., Norris, R.D., Herrle, J.O., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackleton, N.J., Tripati, A.K. and Wade, B.S., 2006b, The heartbeat of the Oligocene climate system. Science, 314.
  29. Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt-Brown, K.G., Nicholas, C.J., Olsson, R.K., Shackleton, N.J. and Hall, M.A., 2001, Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413(4), p. 481-487. https://doi.org/10.1038/35097000
  30. Pekar, S.F. and Christie-Blick, N., 2008, Resolving apparent conflicts between oceanographic and Antarctic climate records and evidence for a decrease in $pCO_2$ during the Oligocene through early Miocene (34-16 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology, 260, p. 41-49. https://doi.org/10.1016/j.palaeo.2007.08.019
  31. Pekar, S.F., DeConto, R.M. and Harwood, D.M., 2006, Resolving a late Oligocene conundrum: Deep-sea warming and Antarctic glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 29-40, doi:10.1016/j.palaeo.2005.07.024.
  32. Rathburn, A.E. and Corliss, B.H., 1994, The ecology of living (stained) benthic foraminifera from the Sulu Sea. Paleoceanography, 9, p. 87-150. https://doi.org/10.1029/93PA02327
  33. Ravelo, A.C. and Hillaire-Marcel, C., 2007, The use of oxygen and carbon isotopes of foraminifera in Paleoceanography. In: Hillaire-Marcel, C., de Vernal, A. (Eds.), Proxies in Late Cenozoic Paleoceanography. Elsevier, Amsterdam, p. 735-760.
  34. Scher, H.D. and Martin, E.E., 2008, Oligocene deep water export from the North Atlantic and the development of the Antarctic Circumpolar Current examined with neodymium isotopes. Paleoceanography, 23, doi:10.1029/2006PA001400.
  35. Schlanger, S.O., Jackson, E.D., et al., 1976, Initial Reports of the Deep Sea Drilling Project. 33, Washington (U.S. Government Printing Office).
  36. Sexton, P.F., Wilson, P.A. and Norris, R.D., 2006, Testing the Cenozoic multisite composite ${\delta}18O$ and ${\delta}13C$ curves: New monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207). Paleoceanography, 21, doi:10.1029/2005 PA001253.
  37. Tucholke, B.E. and Vogt, P.R., 1979, Western North Atlantic: sedimentary evolution and aspects of tectonic history. In Tucholke, B.E., Vogt, P.R., et al., Initial Reports of DSDP, 43: Washington, DC (U.S. Govt. Printing Office), p. 791-825. doi:10.2973/dsdp.proc.43.140.1979.
  38. Van der Zwaan, G.J., Duijnstee, I.A.P., Dulk, M.D., Ernst, S.R., Jannink, N.T. and Kouwenhoven, T.J., 1999, Benthic foraminifers: proxies or problems? A review of paleocological concepts. Earth Science Reviews, 46, p. 213-236. https://doi.org/10.1016/S0012-8252(99)00011-2
  39. Via, R.K. and Thomas, D.J., 2006, Evolution of Atlantic thermohaline circulation: Early Oligocene onset of deep-water production in the North Atlantic. Geology, 34, p. 441-444. https://doi.org/10.1130/G22545.1
  40. Voelker, A.H.L., Colman, A., Olack, G., Waniek, J.J. and Hodell, D., 2015, Oxygen and hydrogen isotope signatures of Northeast Atlantic water masses. Deep-Sea Research II, 116, p. 89-106. https://doi.org/10.1016/j.dsr2.2014.11.006
  41. Whitworth, T. and Nowlin, W.D., 1987, Water masses and currents of the Southern Ocean at the Greenwich Meridian. Journal of geophysical research, 92, p. 6462-6476. https://doi.org/10.1029/JC092iC06p06462
  42. Willey, J.D. and Cahoon, L.B., 1991, Enhancement of chlorophyll a production in Gulf Stream surface seawater by rainwater nitrate. Marine Chemistry, 34, p. 63-75. https://doi.org/10.1016/0304-4203(91)90014-N
  43. Wright, J.D. and Miller, K.G., 1993, Southern Ocean influences on late Eocene to Miocene deepwater circulation. The Antarctic Paleoenvironment, 60, P. 1-25.
  44. Zachos, J.C., Pagani, M., Sloan, L., Thomas, E. and Billups, K., 2001, Trends, rhythms and aberrations in global climate 65 Ma to present. Science, 292, 686-693. https://doi.org/10.1126/science.1059412

Cited by

  1. Opposite response modes of NADW dynamics to obliquity forcing during the late Paleogene vol.10, pp.1, 2018, https://doi.org/10.1038/s41598-020-70020-2