• 제목/요약/키워드: Maskless screen printing process

검색결과 5건 처리시간 0.019초

Maskless Screen Printing Process using Solder Bump Maker (SBM) for Low-cost, Fine-pitch Solder-on-Pad (SoP) Technology

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.65-68
    • /
    • 2013
  • A novel bumping process using solder bump maker (SBM) is developed for fine-pitch flip chip bonding. It features maskless screen printing process. A selective solder bumping mechanism without the mask is based on the material design of SBM. Maskless screen printing process can implement easily a fine-pitch, low-cost, and lead-free solder-on-pad (SoP) technology. Its another advantage is ternary or quaternary lead-free SoP can be formed easily. The process includes two main steps: one is the thermally activated aggregation of solder powder on the metal pads on a substrate and the other is the reflow of the deposited powder on the pads. Only a small quantity of solder powder adjacent to the pads can join the first step, so a quite uniform SoP array on the substrate can be easily obtained regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of 130 ${\mu}m$ is, successfully, formed.

Interconnection Technology Based on InSn Solder for Flexible Display Applications

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung;Lee, Jin Ho
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.387-394
    • /
    • 2015
  • A novel interconnection technology based on a 52InSn solder was developed for flexible display applications. The display industry is currently trying to develop a flexible display, and one of the crucial technologies for the implementation of a flexible display is to reduce the bonding process temperature to less than $150^{\circ}C$. InSn solder interconnection technology is proposed herein to reduce the electrical contact resistance and concurrently achieve a process temperature of less than $150^{\circ}C$. A solder bump maker (SBM) and fluxing underfill were developed for these purposes. SBM is a novel bumping material, and it is a mixture of a resin system and InSn solder powder. A maskless screen printing process was also developed using an SBM to reduce the cost of the bumping process. Fluxing underfill plays the role of a flux and an underfill concurrently to simplify the bonding process compared to a conventional flip-chip bonding using a capillary underfill material. Using an SBM and fluxing underfill, a $20{\mu}m$ pitch InSn solder SoP array on a glass substrate was successfully formed using a maskless screen printing process, and two glass substrates were bonded at $130^{\circ}C$.

Maskless용 스크린 제판 기술 연구(I) (A Study on the Maskless Plate Making Technology for Screen Printing(I))

  • 이미영;박경진;남수용
    • 한국인쇄학회지
    • /
    • 제26권1호
    • /
    • pp.73-85
    • /
    • 2008
  • We have manufactured a photoresist which has excellent dispersity and good applying property due to 330cps of viscosity for environment-friendly and economical maskless screen plate making. And the photoresist applied on the screen stretched was exposed without mask by beam projector with CRT light source. Then it was developed by air spray with $1.7kgf/cm^2$ of injection pressure. The pencil hardness and solvent resistance of curing photoresist film were worse than those of conventional photoresist film and the maximum resolution of line image formed by maskless screen plate making was 0.5 mm since the exposure system for maskless plate making has weak light intensity and the diffusion of light. But we could obtain maskless screen plate which has sharp edges of line image and confirm a possibility of dry development process by air spray method.

  • PDF

포토마스크가 필요 없는 스크린 제판 기술 개발(II) (A Development on the Non-Photomask Plate Making Technology for Screen Printing (II))

  • 박경진;강효진;김성빈;남수용;안병현
    • 한국인쇄학회지
    • /
    • 제26권2호
    • /
    • pp.45-54
    • /
    • 2008
  • We have manufactured a photoresist which has excellent dispersity and good applying property due to 330 cps of viscosity for environment-friendly and economical maskless screen plate making. And the photoresist applied on the screen stretched was exposed with mask by UV-LED light source so we could manufacture the photoresist which proper for the UV light source. And it was developed by air spray with $1.7\;kgf/cm^2$ of injection pressure. Because of the excellence of power and resolution of the UV-LED light sourse, the pencil hardness and solvent resistance of curing photoresist film were excellent as those of conventional photoresist film. Moreover the $100{\mu}m$-width stripe image which has sharp edges was formed. So we confirmed a possibility of dry development process by air spray method.

  • PDF

Fine-Pitch Solder on Pad Process for Microbump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung
    • ETRI Journal
    • /
    • 제35권6호
    • /
    • pp.1152-1155
    • /
    • 2013
  • A cost-effective and simple solder on pad (SoP) process is proposed for a fine-pitch microbump interconnection. A novel solder bump maker (SBM) material is applied to form a 60-${\mu}m$ pitch SoP. SBM, which is composed of ternary Sn3.0Ag0.5Cu (SAC305) solder powder and a polymer resin, is a paste material used to perform a fine-pitch SoP through a screen printing method. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder, the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. Test vehicles with a daisy chain pattern are fabricated to develop the fine-pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si chip has 6,724 bumps with a 45-${\mu}m$ diameter and 60-${\mu}m$ pitch. The chip is flip chip bonded with a Si substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of the underfill. The optimized bonding process is validated through an electrical characterization of the daisy chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and microbump interconnection using a screen printing process.