수 마이크로 단위로 계측되는 반도체 COG의 정밀도를 높이기 위해서 라인스캔 카메라로 영상을 획득한다. 하지만 불량 검출은 스캔속도와 조명조건에 매우 민감하다. 본 논문에서는 불량이 없는 COG 영상과 입력영상을 정합하여 불량 검출의 정확성을 높이기 위한 방법에 대하여 제안하였다. 두 이미지를 정합시키는 방법으로 영역분할 템플릿 매칭 방법을 사용하였으며 그라디언트 마스크와 AND 연산하여 최종 결과 영상을 획득하였다. 제안된 방법은 다른 이미지 정합 법에 대하여 커다란 성능향상을 보임을 일련의 실험들을 통하여 보여준다.
현대 사회에서 영상은 멀티 디바이스 등에서 가장 효과적은 정보를 제공하며, 에지는 이러한 영상에서 중요한 특징 정보를 포함한다. 이와 같은 에지는 여러 응용분야에서 필수적인 전처리 과정으로 사용되며 우수환 에지 검출을 위해, 많은 연구가 진행되고 있다. 일반적으로 널리 알려진 Sobel, Roberts 방법들은 구현이 간단한 반면, 처리 결과가 다소 미흡하다. 따라서 본 논문에서는 이러한 기존의 방법들의 문제점을 보완하기 위해, 세분화된 마스크의 영역 평균을 이용한 에지 검출 알고리즘을 제안하였으며, 이를 기존의 방법들과 비교하였다.
본 논문에서는 복잡한 영상에서의 윤곽선 검출을 기존의 방법보다 더 명확하고 효율적으로 나타내기 위해서 K-means 군집화를 이용하였다. 제안하는 방법에는 세 가지 단계를 거친다. 첫 번째는 명암분포를 균일하게 하기 위하여 히스토그램 평활화를 사용한다. 두 번째는 거리에 기반을 둔 클러스터링 기법으로 기준점에서 가까운 곳의 데이터들을 하나의 군집으로 묶는 K-means 군집화를 사용하고 마지막으로 에지검출의 가장 대표적인 1차 미분 연산자인 소벨 마스크를 사용하여 윤곽선을 검출한다. 따라서 기존에 있던 윤곽선 검출보다 더 나은 결과로 명확하게 윤곽선을 검출 할 수 있음을 보인다.
We developed a compact gamma camera based on a modified uniformly redundant array coded aperture to investigate the position of a $UO_2$ pellet emitting characteristic X-rays (98.4 keV) and ${\gamma}-rays$ (185.7 keV). Experiments using an only-mask method and an antimask subtractive method were conducted, and the maximum-likelihood expectation maximization algorithm was used for image reconstruction. The images obtained via the antimask subtractive method were compared with those obtained using the only-mask method with regard to the signal-to-noise ratio. The reconstructed images of the antimask subtractive method were superior. The reconstructed images of the characteristic X-rays and the ${\gamma}-rays$ were combined with the obtained image using the optical camera. The combined images showed the precise position of the $UO_2$ pellet. According to the self-absorption ratios of the nuclear material and the minimum number of effective events for image reconstruction, we estimated the minimum detection time depending on the amount of nuclear material.
In this paper, we propose a machine learning-based copy-move forgery detection network with dual branches. Because the rotation or scaling operation is frequently involved in copy-move forger, the conventional convolutional neural network is not effectively applied in detecting copy-move tampering. Therefore, we divide the input into rotation-invariant and scaling-invariant features based on the wavelet coefficients. Each of the features is input to different branches having the same structure, and is fused in the combination module. Each branch comprises feature extraction, correlation, and mask decoder modules. In the proposed network, VGG16 is used for the feature extraction module. To check similarity of features generated by the feature extraction module, the conventional correlation module used. Finally, the mask decoder model is applied to develop a pixel-level localization map. We perform experiments on test dataset and compare the proposed method with state-of-the-art tampering localization methods. The results demonstrate that the proposed scheme outperforms the existing approaches.
COVID-19 전염병은 우리의 일상 생활에 빠르게, 그리고 엄청난 영향을 미쳤다. 현재는 마스크를 착용하는 것이 새로운 평범함이 되었고, 이에 따라 많은 서비스 제공업체들은 고객들에게 그들의 서비스를 이용하기 위해 마스크를 착용하도록 요구하고 있다. 공공 버스도 이에 포함된다. 여러 뉴스 기사에 따르면 마스크를 써 달라는 버스 기사의 부탁에 버스 기사를 폭행한 사건이 여러 번 발생하였다. 이에 기계가 마스크를 쓰지 않은 사람을 가려내고 마스크를 쓰라고 한다면 버스 기사에게 향하는 비이성적 분노가 줄어들 것이라고 생각하였다. 따라서, 본 논문에서는 Keras와 같은 기본적인 기계 학습 패키지를 사용하여 빠르고 정확하게 마스크의 착용여부를 확인할 수 있는 방식을 제안한다. 제안된 방식은 고성능 컴퓨터 및 그래픽카드의 필요없이 CPU에서만 작동하는 마스크 착용 판별프로그렘으로, 추가적으로 알림을 보낼 수 있는 웹사이트와 음성 경고 시스템도 함께 구현하였다. 이 방법은 테스트 데이터셋에서 99.5% 이상의 정확도를 달성했고, GPU가 아닌 CPU에서 6fps 정도의 속도를 지원하여 실생활에 사용될 수 있다.
원격탐사와 GIS의 접목은 해안정보와 지리정보 뿐만 아니라 교통정보 등에 많이 이용되고 있다. 본 연구는 10m급 중해상도를 가지는 SPOT 위성영상으로 LPF(Low Pass Filtering) 기법으로 해안지역의 섬 경계 추출에 관한 연구이다. 연구대상지역은 남해지역으로 원격탐사기법으로 해안지역에 존재하는 섬을 검출하기 위해 LPT를 적용한 후 Sobel 연산자로 경계검출 한 후 GIS를 활용하여 백터자료를 구축하였다. 분석결과 5${\times}$5 convolution mask를 사용하여 섬 경계 추출하는 것이 가장 효과적인 것으로 나타났다. 본 연구를 바탕으로 배타적 경계수역에서 발생할 해양분쟁에서 과학적이고 합리적인 근거자료의 제시가 가능할 것으로 판단된다.
본 논문은 비전기반 터치스크린에서 터치되는 물체에 대해 주변마스크를 이용하여 터치인식을 개선하는 방법에 대해 제안하고 있다. 기존의 비전기반 터치스크린은 단순히 임계값의 범위를 이용하여 터치를 인식하므로, 손으로 직접 터치할 경우 주먹이나 손목에서 노이즈가 생기는 등, 정확한 터치 인식이 어려웠다. 하지만 본 논문에서는 터치스크린에 근접하는 물체에서 모폴로지 연산을 수행하여 주변마스크를 추출하고, 그 부분에 대한 대비값의 변화를 이용한다. 이러한 동적정보를 이용하여 스크린을 터치할 때 잡음을 방지하고 손이 정확히 스크린에 터치되었을때만 터치로 인식할 수 있도록 하는 것을 목적으로 하고 있다.
The laser ultrasonic technique is gaining popularity for nondestructive evaluation (NDE) applications because it is a noncontact and couplant-free method and can inspect a target from a remote distance. For the conventional laser ultrasonic techniques, a pulsed laser is often used to generate broadband ultrasonic waves in a target structure. However, for crack detection using nonlinear ultrasonic modulation, it is necessary to generate narrowband ultrasonic waves. In this study, a pulsed laser is shaped into dual-line arrays using a spatial mask and used to simultaneously excite narrowband ultrasonic waves in the target structure at two distinct frequencies. Nonlinear ultrasonic modulation will occur between the two input frequencies when they encounter a fatigue crack existing in the target structure. Then, a nonlinear damage index (DI) is defined as a function of the magnitude of the modulation components and computed over the target structure by taking advantage of laser scanning. Finally, the fatigue crack is detected and localized by visualizing the nonlinear DI over the target structure. Numerical simulations and experimental tests are performed to examine the possibility of generating narrowband ultrasonic waves using the spatial mask. The performance of the proposed fatigue crack localization technique is validated by conducting an experiment with aluminum plates containing real fatigue cracks.
최근 코로나바이러스로 인한 마스크 착용이 급증함에 따라 마스크 착용에 대응할 수 있는 기술의 중요성이 증가하고 있다. 얼굴 자세 추정 분야는 운전자 주의, 얼굴 정면화, 시선 감지 등의 다양한 활용성에도 불구하고 마스크 착용에 따른 성능 저하 문제를 해결할 수 있는 연구가 거의 수행되지 않았다. 본 논문은 마스크 착용 유무에 따른 얼굴 자세 추정의 성능 저하에 대한 분석을 토대로, 마스크가 없는 얼굴 이미지의 크기 및 자세를 분석하여 마스크 이미지를 합성할 수 있는 데이터 증강 기법을 제안한다. 제안하는 얼굴에 특화된 증강 기법을 활용한 학습은 마스크 착용 여부와 관계없이 얼굴 자세 추정 벤치마크 데이터 세트인 BIWI에서 강인한 성능을 보이며, 특정 모델에 국한되지 않기 때문에 다양한 얼굴 자세 추정 모델에 적용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.