• Title/Summary/Keyword: Markov-Chain Monte Carlo

검색결과 272건 처리시간 0.024초

Approximating Exact Test of Mutual Independence in Multiway Contingency Tables via Stochastic Approximation Monte Carlo

  • Cheon, Soo-Young
    • 응용통계연구
    • /
    • 제25권5호
    • /
    • pp.837-846
    • /
    • 2012
  • Monte Carlo methods have been used in exact inference for contingency tables for a long time; however, they suffer from ergodicity and the ability to achieve a desired proportion of valid tables. In this paper, we apply the stochastic approximation Monte Carlo(SAMC; Liang et al., 2007) algorithm, as an adaptive Markov chain Monte Carlo, to the exact test of mutual independence in a multiway contingency table. The performance of SAMC has been investigated on real datasets compared to with existing Markov chain Monte Carlo methods. The numerical results are in favor of the new method in terms of the quality of estimates.

Markov Chain Monte Carlo를 이용한 반도체 결함 클러스터링 파라미터의 추정 (Estimation of Defect Clustering Parameter Using Markov Chain Monte Carlo)

  • 하정훈;장준현;김준현
    • 산업경영시스템학회지
    • /
    • 제32권3호
    • /
    • pp.99-109
    • /
    • 2009
  • Negative binomial yield model for semiconductor manufacturing consists of two parameters which are the average number of defects per die and the clustering parameter. Estimating the clustering parameter is quite complex because the parameter has not clear closed form. In this paper, a Bayesian approach using Markov Chain Monte Carlo is proposed to estimate the clustering parameter. To find an appropriate estimation method for the clustering parameter, two typical estimators, the method of moments estimator and the maximum likelihood estimator, and the proposed Bayesian estimator are compared with respect to the mean absolute deviation between the real yield and the estimated yield. Experimental results show that both the proposed Bayesian estimator and the maximum likelihood estimator have excellent performance and the choice of method depends on the purpose of use.

가역 도약 마르코프 연쇄 몬테 카를로 방법을 이용한 물성 역산 기술 소개 (Introduction to Subsurface Inversion Using Reversible Jump Markov-chain Monte Carlo)

  • 전형구;조용채
    • 지구물리와물리탐사
    • /
    • 제25권4호
    • /
    • pp.252-265
    • /
    • 2022
  • 지하 매질의 물성 정보는 지층 구조의 정확한 영상화를 위해 필요하며, 예측된 매질 물성 자체도 지하 매질 특성에 대한 중요한 정보를 제공해줄 수 있기 때문에 다양한 종류의 지층 물성 도출 알고리듬들이 개발되고 적용되어왔다. 그 중 마르코프 연쇄 몬테 카를로를 이용한 확률론적인 접근 방법은 기존의 결정론적인 접근 방법과는 달리 지역 최소값 문제를 완화시킬 수 있으며 역산 결과의 불확실성을 정량화할 수 있다는 부분에서 장점을 가진다. 따라서 마르코프 연쇄 몬테 카를로를 이용한 지층 물성 역산 알고리듬이 다양한 지구 물리 자료의 역산에 적용되어 왔으나 그 사례는 결정론적 접근 방법에 비해 매우 적다. 본 논문에서는 여러 형태의 마르코프 연쇄 몬테 카를로 역산 알고리듬 중 가역 도약을 적용한 가역 도약 마르코프 연쇄 몬테 카를로 역산을 탄성파 자료 역산에 적용한 다양한 사례들을 소개하고 각각의 특성을 설명한다. 또한 가역 도역 마르코프 연쇄 몬테 카를로 역산의 장단점에 대해 분석하고 향후 해당 알고리듬의 연구 방향 및 국내의 활용성에 대해 논의한다.

Markov Chain Monte Carlo simulation based Bayesian updating of model parameters and their uncertainties

  • Sengupta, Partha;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.103-115
    • /
    • 2022
  • The prediction error variances for frequencies are usually considered as unknown in the Bayesian system identification process. However, the error variances for mode shapes are taken as known to reduce the dimension of an identification problem. The present study attempts to explore the effectiveness of Bayesian approach of model parameters updating using Markov Chain Monte Carlo (MCMC) technique considering the prediction error variances for both the frequencies and mode shapes. To remove the ergodicity of Markov Chain, the posterior distribution is obtained by Gaussian Random walk over the proposal distribution. The prior distributions of prediction error variances of modal evidences are implemented through inverse gamma distribution to assess the effectiveness of estimation of posterior values of model parameters. The issue of incomplete data that makes the problem ill-conditioned and the associated singularity problem is prudently dealt in by adopting a regularization technique. The proposed approach is demonstrated numerically by considering an eight-storey frame model with both complete and incomplete modal data sets. Further, to study the effectiveness of the proposed approach, a comparative study with regard to accuracy and computational efficacy of the proposed approach is made with the Sequential Monte Carlo approach of model parameter updating.

마르코프 연쇄 몬테 카를로 샘플링과 부분집합 시뮬레이션을 사용한 컨테이너 크레인 계류 시스템의 신뢰성 해석 (Reliability Analysis of Stowage System of Container Crane using Subset Simulation with Markov Chain Monte Carlo Sampling)

  • 박원석;옥승용
    • 한국안전학회지
    • /
    • 제32권3호
    • /
    • pp.54-59
    • /
    • 2017
  • This paper presents an efficient finite analysis model and a simulation-based reliability analysis method for stowage device system failure of a container crane with respect to lateral load. A quasi-static analysis model is introduced to simulate the nonlinear resistance characteristics and failure of tie-down and stowage pin, which are the main structural stowage devices of a crane. As a reliability analysis method, a subset simulation method is applied considering the uncertainties of later load and mechanical characteristic parameters of stowage devices. An efficient Markov chain Monte Carlo (MCMC) method is applied to sample random variables. Analysis result shows that the proposed model is able to estimate the probability of failure of crane system effectively which cannot be calculated practically by crude Monte Carlo simulation method.

Bayesian Markov Chain Monte Carlo 기법을 통한 NWS-PC 강우-유출 모형 매개변수의 최적화 및 불확실성 분석 (Parameter Optimization and Uncertainty Analysis of the NWS-PC Rainfall-Runoff Model Coupled with Bayesian Markov Chain Monte Carlo Inference Scheme)

  • 권현한;문영일;김병식;윤석영
    • 대한토목학회논문집
    • /
    • 제28권4B호
    • /
    • pp.383-392
    • /
    • 2008
  • 수공구조물을 설계하거나 수자원계획을 수립할 때 제한된 수문자료로 인해 수문모형의 매개변수를 추정하는데 어려움이 따르며 추정된 결과에 신뢰성을 부여하기 위해서 필수적으로 불확실성 분석이 필요하다 하겠다. 이러한 관점에서 본 연구에서는 국내외에서 주로 이용되고 있는 NWS-PC 강우-유출 모형을 대상으로 보다 진보된 매개변수 추정과 불확실성 분석이 가능한 Bayesian Markov Chain Monte Carlo 기법과 결합하여 국내 소양강댐 유역 일유입량 모의에 적용하였다. 실측 일유입량 자료를 대상으로 모형의 검정과정을 수행하였으며 NWS-PC 모형의 총 13개의 매개변수에 대한 사후분포를 추정하여 유출수문곡선의 불확실성 구간을 추정하였다. 검정 및 검증 모두에서 Bayesian Markov Chain Monte Carlo 기법이 모형의 적합성 측면에서 기존 방법론과 비교해보면 다소 우수하거나 비슷한 결과를 나타내었다. 실제로 유역에 발생하는 유출은 다양한 요인에 따라 변화될 수 있으며 이러한 점에서 Bayesian 방법은 강우-유출 관계에서 발생하는 이러한 불확실성을 매개변수의 불확실성으로 인지함으로서 우리가 예상치 못한 유출 사상에 대한 형태를 고려할 수 있는 장점이 있다. 따라서 댐 설계와 같은 대규모 수공 구조물 설계 시에 이러한 불확실성이 접목된 강우-유출 분석이 이루어진다면 보다 합리적인 방법으로 홍수 위험도 분석이 가능하며 더욱이 댐 규모 결정에 있어서 신뢰성 있는 의사 결정 수단을 제공할 수 있을 것으로 사료된다.

베이지안 통계 추론 (On the Bayesian Statistical Inference)

  • 이호석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (C)
    • /
    • pp.263-266
    • /
    • 2007
  • 본 논문은 베이지안 통계 추론에 대하여 논의한다. 논문은 베이지안 추론, Markov Chain과 Monte Carlo 적분, MCMC(Markov Chain Monte Carlo) 기법, Metropolis-Hastings 알고리즘, Gibbs 샘플링, Maximum Likelihood Estimation, EM 알고리즘, 상실된 데이터 보완 기법, BMA(Bayesian Model Averaging) 순서로 논의를 진행한다. 이러한 통계적 기법들은 대용량의 데이터를 처리하는 생물학, 의학, 생명 공학, 과학과 공학, 그리고 일반 데이터 조사와 처리 등에 사용되고 있으며, 최적의 추론 결과를 이끌어 내는데 중요한 방법을 제공하고 있다. 그리고 마지막으로 PC(Principal Component) 분석 기법에 대하여 논의한다. PC 분석 기법도 데이터 분석과 연구에 많이 활용된다.

  • PDF

MCMC 방법을 이용한 자율주행 차량의 보행자 탐지 및 추적방법 (Pedestrian Detection and Tracking Method for Autonomous Navigation Vehicle using Markov chain Monte Carlo Algorithm)

  • 황중원;김남훈;윤정연;김창환
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.113-119
    • /
    • 2012
  • In this paper we propose the method that detects moving objects in autonomous navigation vehicle using LRF sensor data. Object detection and tracking methods are widely used in research area like safe-driving, safe-navigation of the autonomous vehicle. The proposed method consists of three steps: data segmentation, mobility classification and object tracking. In order to make the raw LRF sensor data to be useful, Occupancy grid is generated and the raw data is segmented according to its appearance. For classifying whether the object is moving or static, trajectory patterns are analysed. As the last step, Markov chain Monte Carlo (MCMC) method is used for tracking the object. Experimental results indicate that the proposed method can accurately detect moving objects.

Use of Markov Chain Monte Carlo in Estimating the Economy Model

  • Lee, Seung Moon
    • 통합자연과학논문집
    • /
    • 제1권2호
    • /
    • pp.127-132
    • /
    • 2008
  • This project follows the heterogeneous agent market segmented model of Landon-Lane and Occhino (2007) with using Korean data, M1 and GDP deflator from 1882:I to 2007:II. This paper estimates parameters with Monte Carlo Markov Chain. The fraction of traders, ${\lambda}$, in Korea is 15.64%. The quarterly preferences discount factor's, ${\beta}$, posterior mean is 0.9922. The posterior mean of the inverse of the elasticity of the labor supply to the real wage, ${\varphi}$, is 0.0316. The elasticity of the labor supply to the real wage has a very large value. By Hansen (1985) and Christiano and Eichenbaum (1992) and Cooley and Hansen (1989), models having large elasticity of the aggregate labor supply better match macroeconomic data.

  • PDF

Direct tracking of noncircular sources for multiple arrays via improved unscented particle filter method

  • Yang Qian;Xinlei Shi;Haowei Zeng;Mushtaq Ahmad
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.394-403
    • /
    • 2023
  • Direct tracking problem of moving noncircular sources for multiple arrays is investigated in this study. Here, we propose an improved unscented particle filter (I-UPF) direct tracking method, which combines system proportional symmetry unscented particle filter and Markov Chain Monte Carlo (MCMC) algorithm. Noncircular sources can extend the dimension of sources matrix, and the direct tracking accuracy is improved. This method uses multiple arrays to receive sources. Firstly, set up a direct tracking model through consecutive time and Doppler information. Subsequently, based on the improved unscented particle filter algorithm, the proposed tracking model is to improve the direct tracking accuracy and reduce computational complexity. Simulation results show that the proposed improved unscented particle filter algorithm for noncircular sources has enhanced tracking accuracy than Markov Chain Monte Carlo unscented particle filter algorithm, Markov Chain Monte Carlo extended Kalman particle filter, and two-step tracking method.