• 제목/요약/키워드: Markov chain - Monte Carlo

검색결과 272건 처리시간 0.023초

부등 제한 조건하에서의 베이지안 추론 (Bayesian Inference with Inequality Constraints)

  • 오만숙
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.909-922
    • /
    • 2014
  • 부등제한 조건 (>,<,=)과 관련된 베이지안 추론에서 다음의 세 가지 주제에 대하여 기존의 연구와 최근의 연구동향 그리고 추후 연구주제에 대하여 살펴보았다 : ⅰ) 모수에 대한 여러 부등제한 조건들의 비교, ⅱ) 모수에 부등제한 조건을 부여하는 것이 타당하다고 할 때 모수의 동등성에 관한 동시 다중 검정, ⅲ) 순서적 범주형 변수에 대한 분할표에서 스코어 모수에 순서적 부등제한 조건을 가정 할 때 스코어 모수의 동등성에 대한 다중 검정.

Transition-$\omega$CDM 모형을 이용한 SN Ia 자료 분석

  • 박재홍
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.73.2-73.2
    • /
    • 2010
  • 암흑에너지는 우주상수만으로 여러 우주론 관측 자료들을 잘 설명하고 있지만, 최근 SN Ia 자료가 축적됨에 따라 암흑에너지의 상태방정식 파라미터 $\omega$가 우주상수에서와 같이 -1인 상수인지, 시간에 따라 변하는지를 알아내기 위한 연구가 진행되고 있다. 본 연구에서는 $\omega$가 시간에 따라 갑자기 변하는(sudden jump) transition-$\omega$CDM 모형을 이용하여 SN Ia 자료를 Markov Chain Monte Carlo(MCMC) 방법을 통해 분석했다. Transition-$\omega$CDM 모형에서는 상수인 $\omega$의 값이 임의의 적색이동에서 변한다고 가정하였다. 분석에 사용된 SN Ia 데이터는 307개의 Union 자료와 90개의 CfA3 SN Ia가 추가된 Constitution 자료이며 개별적으로 분석됐다. 그 결과 transition 시기 전후 $\omega$ 값들의 확률밀도분포를 얻어내었고, 이를 통해 SN Ia의 특성을 조사하였다.

  • PDF

Understanding reionization and cosmic dawn with galaxies and 21-cm

  • Park, Jaehong;Mesinger, Andrei;Greig, Bradley
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.38.3-38.3
    • /
    • 2018
  • The properties of unseen high-redshift sources (and sinks) are encoded in the 3D structure of the cosmic 21-cm signal. Here I introduce a flexible parametrization for high-z galaxies' properties, including their star formation rates, ionizing escape fraction and their evolution with the mass of the host dark matter halos. With this parametrization, I self-consistently calculate the corresponding 21-cm signal during reionization and the cosmic dawn. Using a Monte Carlo Markov Chain sampler of 3D simulations, 21CMMC, I demonstrate how combining high-z luminosity functions with a mock 21-cm signal can break degeneracies, resulting in ~ percent level constraints on early universe astrophysics.

  • PDF

BAYESIAN MODEL AVERAGING FOR HETEROGENEOUS FRAILTY

  • Chang, Il-Sung;Lim, Jo-Han
    • Journal of the Korean Statistical Society
    • /
    • 제36권1호
    • /
    • pp.129-148
    • /
    • 2007
  • Frailty estimates from the proportional hazards frailty model often lead us to conjecture the heterogeneity in frailty such that the variance of the frailty varies over different covariate groups (e.g. male group versus female group). For such systematic heterogeneity in frailty, we consider a regression model for the variance components in the proportional hazards frailty model, denoted by the MLFM. However, in many cases, the observed data do not show any statistically significant preference between the homogeneous frailty model and the heterogeneous frailty model. In this paper, we propose a Bayesian model averaging procedure with the reversible jump Markov chain Monte Carlo which selects the appropriate model automatically. The resulting regression coefficient estimate ignores the model uncertainty from the frailty distribution in view of Bayesian model averaging (Hoeting et al., 1999). Finally, the proposed model and the estimation procedure are illustrated through the analysis of the kidney infection data in McGilchrist and Aisbett (1991) and a simulation study is implemented.

The Exponentiated Weibull-Geometric Distribution: Properties and Estimations

  • Chung, Younshik;Kang, Yongbeen
    • Communications for Statistical Applications and Methods
    • /
    • 제21권2호
    • /
    • pp.147-160
    • /
    • 2014
  • In this paper, we introduce the exponentiated Weibull-geometric (EWG) distribution which generalizes two-parameter exponentiated Weibull (EW) distribution introduced by Mudholkar et al. (1995). This proposed distribution is obtained by compounding the exponentiated Weibull with geometric distribution. We derive its cumulative distribution function (CDF), hazard function and the density of the order statistics and calculate expressions for its moments and the moments of the order statistics. The hazard function of the EWG distribution can be decreasing, increasing or bathtub-shaped among others. Also, we give expressions for the Renyi and Shannon entropies. The maximum likelihood estimation is obtained by using EM-algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). We can obtain the Bayesian estimation by using Gibbs sampler with Metropolis-Hastings algorithm. Also, we give application with real data set to show the flexibility of the EWG distribution. Finally, summary and discussion are mentioned.

베이지안 비선형회귀모형의 선택과 진단 (Bayesian Mode1 Selection and Diagnostics for Nonlinear Regression Model)

  • 나종화;김정숙
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.139-151
    • /
    • 2002
  • 본 논문에서는 베이지안 기법을 이용한 비선형회귀모형의 선택법을 제안하였다. 베이즈요인에 기초한 이 방법은 주로 대표본의 경우에 이용되는 고전적 모형선택법에 비해 사전정보를 이용하는 측면과 비내포모형 및 소표본의 경우에 대해서도 효과적으로 사용될 수 있다는 장점을 가진다. 본 논문에서는 정보적 사전분포를 고려하였으며, 베이즈요인의 추정 방법으로 Laplace - Metropolis 추정 법을 제안하였다. 또한 MCMC 과정을 통해 추정된 모수의 수렴진단에 대해서도 고려하였다. 실제자료에 대한 최적의 모형선택 및 진단과정을 구체적으로 제시하였다.

Bayesian Nonstationary Flood Frequency Analysis Using Climate Information

  • Moon, Young-Il;Kwon, Hyun-Han
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1441-1444
    • /
    • 2007
  • It is now widely acknowledged that climate variability modifies the frequency spectrum of hydrological extreme events. Traditional hydrological frequency analysis methodologies are not devised to account for nonstationarity that arises due to variation in exogenous factors of the causal structure. We use Hierarchical Bayesian Analysis to consider the exogenous factors that can influence on the frequency of extreme floods. The sea surface temperatures, predicted GCM precipitation, climate indices and snow pack are considered as potential predictors of flood risk. The parameters of the model are estimated using a Markov Chain Monte Carlo (MCMC) algorithm. The predictors are compared in terms of the resulting posterior distributions of the parameters associated with estimated flood frequency distributions.

  • PDF

Robust Bayesian analysis for autoregressive models

  • Ryu, Hyunnam;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.487-493
    • /
    • 2015
  • Time series data sometimes show violation of normal assumptions. For cases where the assumption of normality is untenable, more exible models can be adopted to accommodate heavy tails. The exponential power distribution (EPD) is considered as possible candidate for errors of time series model that may show violation of normal assumption. Besides, the use of exible models for errors like EPD might be able to conduct the robust analysis. In this paper, we especially consider EPD as the exible distribution for errors of autoregressive models. Also, we represent this distribution as scale mixture of uniform and this form enables efficient Bayesian estimation via Markov chain Monte Carlo (MCMC) methods.

변동하중 하에서의 불확실성 기반 균열성장 예측 (Uncertainty based crack growth prediction under variable amplitude loads)

  • 임상혁;안다운;최주호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.349-352
    • /
    • 2011
  • 본 논문에서는 변동하중 하에서의 균열 성장 예측을 위하여 손상 모델과 주어진 데이터에 기반하여 균열 성장 모델의 변수를 확률분포로 추정한다. 이를 위해 베이지안 접근법을 활용하여 불확실 변수 결합 확률 분포식을 구축하고, Markov Chain Monte Carlo(MCMC)을 통해서 균열 성장 모델의 변수 샘플을 추출하였다. 여기서 추출된 샘플들을 균열 성장 모델에 적용, 균열 성장의 결과를 확률적인 분포로 예측하였다. 위와 같은 추정은 재료의 물성과 같은 변동성이 있는 변수를 모델에 적용하여, 결과값을 확률적인 분포로 예측하였다. 이것은 기존의 안전계수 개념보다 더욱 적절한 안전 기준을 제시 할 수 있다.

  • PDF

Nonparametric Bayesian Multiple Comparisons for Dependence Parameter in Bivariate Exponential Populations

  • 조장식
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.71-80
    • /
    • 2006
  • A nonparametric Bayesian multiple comparisons problem (MCP) for dependence parameters in I bivariate exponential populations is studied here. A simple method for pairwise comparisons of these parameters is also suggested. Here we extend the methodology studied by Gopalan and Berry (1998) using Dirichlet process priors. The family of Dirichlet process priors is applied in the form of baseline prior and likelihood combination to provide the comparisons. Computation of the posterior probabilities of all possible hypotheses are carried out through Markov Chain Monte Carlo method, namely, Gibbs sampling, due to the intractability of analytic evaluation. The whole process of MCP for the dependent parameters of bivariate exponential populations is illustrated through a numerical example.

  • PDF