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BAYESIAN MODEL AVERAGING FOR
HETEROGENEOUS FRAILTY

ILsune CHANG! AND JOHAN Lim?

ABSTRACT

Frailty estimates from the proportional hazards frailty model often lead
us to conjecture the heterogeneity in frailty such that the variance of the
frailty varies over different covariate groups (e.g. male group versus female
group). For such systematic heterogeneity in frailty, we consider a regres-
sion model for the variance components in the proportional hazards frailty
model, denoted by the MLFM. However, in many cases, the observed data
do not show any statistically significant preference between the homogeneous
frailty model and the heterogeneous frailty model. In this paper, we pro-
pose a Bayesian model averaging procedure with the reversible jump Markov
chain Monte Carlo which selects the appropriate model automatically. The
resulting regression coefficient estimate ignores the model uncertainty from
the frailty distribution in view of Bayesian model averaging (Hoeting et al.,
1999). Finally, the proposed model and the estimation procedure are illus-
trated through the analysis of the kidney infection data in McGilchrist and
Aisbett (1991) and a simulation study is implemented.

AMS 2000 subject classifications. Primary 62F15; Sencondary 62N01.
Keywords. Heterogeneous frailty, kidney infection data, multi-level regression model,
proportional hazards model, variance components.

1. INTRODUCTION

Analysis of multivariate failure times entails incorporating the dependence
among the observed times into the proportional hazard model. The proportional
hazard frailty model, denoted by PHFM hereafter, treats the dependence between
multivariate failure times using the unobserved common frailty, which is assumed
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to follow a specific type of distribution such as gamma and log-normal distribu-
tion. To be specific, in the PHFM, the j** recurrent time of the i** subject has
the hazards rate at time ¢ as

At | vig, xs5) = vigho(t) exp (2336),

where A\o(t) is a baseline hazards function, z;; is covariate and v;; is a vector
of random effects (frailty). The frailty v;; is often assumed to be homogeneous
which implies the frailty does not vary over time or different covariates: e.g.

Vi = Vi1 = - = Vim, (1-1)
g(v’i|Xi1)Xi2a-"’Xim) :g(vi)a (12)

where (1.1) implies the homogeneity over time and (1.2) implies the homogeneity
over covariates.

The above two homogeneous assumptions are, however, easily broken in prac-
tice. First, when repeatedly measured survival times are observed, it is natural
to assume that two adjacent survival times are more correlated to each other
than those two which are apart to each other in time. However, the frailty model
assuming (1.1) only allows a positive constant (not varying over time) correlation
among repeatedly measured survival times. Second, the violation to the assump-
tion (1.2) has long been discussed in the literature of the generalized linear model
(GLM) (see the mean variance joint model in McCullough and Nelder, 1989). Al-
though assuming the homogeneity and a specific type of distribution on frailty has
been the premise in most works so far, several recent studies showed that different
frailty distributions induce quite different dependence structures (Shih and Louis,
1995; Glidden, 1999). Furthermore, the mis-specification in frailty distribution
may result in the bias of regression coefficient estimates (Lancaster, 1996, Section
10.4.2). Hence, one should pay careful attention to such aspects especially when
the observations exhibit a strong pattern of heterogeneity; for instance, in the
non—trivial presence of extraordinary large or small survival times.

To date, much effort has been made to lessen the assumptions on the frailty.
First, for distributional assumption, many previous works have broadened the
class of frailty distributions. Especially several heavy tail distributions have been
proposed to cope with the unusual frailty estimates. For example, in the kidney
data analysis by McGilchrist and Aisbett (1991), the frailty estimates from the
PHFM with log-normal frailty raise the doubt on heavy tail and several wider
classes of frailty distributions have been proposed; Sahu and Dey (2004) intro-
duced a log-skewed t—distribution; Ravishanker and Dey (2000) introduced a
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mixture of positive stable distributions. Second, to overcome the shortcomings
from the homogeneity over time, the models with stochastically varying frailty
have been proposed by several authors. Some interesting works among many
are; the dynamic gamma frailty model by Yue and Chan (1996) where the mul-
tiplicative random walk is assumed for varying frailty; the autoregressive (AR)
frailty model by Yau and McGilchrist (1998) where the frailty moves according
to the AR process; and the similar AR model is considered by Diggle (1988) in
the regression model. It should be remarked that the heterogeneous frailty can
easily be confused with the heavy tail frailty, in the sense that the heterogeneous
frailty, the mixture of homogeneous frailty distribution, has a heavier tail than
that of each homogeneous component.

In this paper, we study the regression model for the variance components in
the PHFM through the kidney data example. In the kidney data analysis, it is
conjectured by several authors that the individual effects of male group have a
larger variance than those of female group (Qiou et al., 1999, p. 640). Motivated
by such observations, we extend the mean variance joint model in the GLM (or
the multi-level regression model) to the frailty model and denote it as the multi-
level frailty model (MLFM). However, as we will see in the analysis of the kidney
data, the observed data are often hard to provide any statistical significance
between the homogeneous frailty model and the heterogeneous frailty model. For
such model uncertainty from the frailty distribution, we propose a fully Bayesian
approach with the reversible jump Markov chain Monte Carlo (MCMC) by Green
(1995) to select the model automatically between the PHFM with homogeneous
frailty and that with heterogeneous frailty. Thus, the estimate of the regression
coefficient ignores the model uncertainty from the frailty distribution in the sense
that it averages between the homogeneous frailty model and the heterogeneous
frailty model.

A brief outline of the paper is as follows. In Section 2, we review the analysis
of the kidney data in the literature and introduce the model we consider (MLFM).
Section 3 introduces the Markov chain Monte Carlo procedure to estimate the
proposed model. Section 4 analyzes the kidney data and implements a simulation
study to see the performance of the proposed procedure for various magnitude
of heterogeneity and sample size. Finally, Section 5 concludes the paper with
further discussion on computing time, the extension to more general PHFMs and
the accelerated failure time models.
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2. KIDNEY INFECTION DATA AND MULTI-LEVEL FRAILTY MODEL

McGilchrist and Aisbett (1991) reported the recurrence times (in days) of
infections of 38 kidney patients from insertion of catheter until it had to be re-
moved owing to infection. Many PHFMs have been applied to this kidney data
set and several of them pointed out the potential heterogeneity in frailty distri-
bution between different sex groups. In particular, Qiou et al. (1999) addressed
that the frailties for the male are rather irregularly distributed with a larger vari-
ance than those of the female. Rabishanker and Dey (2003) proposed the PHFM
with a mixture of positive stable distribution as a remedy to the above problem,
but they did not use the sex information in explaining the heterogeneity. In this
section, we introduce a Bayesian regression model to explain the heterogeneity
in frailty with the variable “sex”.

2.1. Full description of the model

Let t;; be the jth recurrent survival time of the *" subject. Then, given v;,
the hazards function of the model is

A(tij |vis 35) = vido(ti;) exp (z4;8),

where z;; is the covariate “sex”, 8 is the regression coefficient, and Ao(-) is the
baseline hazards function.

2.1.1. Prior description for frailty. Let M; denote the model where the individ-
ual effect v; is assumed to be from the Gamma(e, ), where Gamma(c, §) denotes
a gamma distribution with mean /3 and variance o/3%. My denotes the model
where the individual effect v; is from Gamma(a;, o) if z;; = x; = 1, which
means the i** subject is female and it is from Gamma(ay, ag) if zij = x; = 0,
which means the i** subject is male. The gamma distribution can be replaced
into any other frailty distribution including log—normal distribution and positive
stable distribution. It is further assumed that as a prior distribution, «, o1, and
ap are independently and identically distributed (i.i.d.) Gamma(k, k), where &
is a fixed constant to be estimated or to be guessed. Gelman (2004) discussed
the choice of distributions of the hyper-parameters in hierarchical models and
provided an example whose final estimates strongly depend on the specification
of hyper-parameter distribution. We observe that it does not apply to our case
(see Section 3.4)
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2.1.2. Priors for the regression coefficient. A normal prior is put on the regres-
sion coefficient, 3, with zero mean and and variance b2, for which we choose 103
as in Sahu et al. (1997).

2.1.3. Prior description for the baseline hazards function. The time period is
divided into J pre-specified intervals, I; = (si_l,si) for i =1,2,...,J, where
0=s0<s3 <s3<---<sy<oo. The baseline hazard function Ay(¢) is assumed
to be piecewise constant as

Ao(t) = A if sp <t < spya.

In this paper, we assume the piecewise independent gamma distribution as a prior
for the baseline hazards function, which assumes A = (A1,...,Ay) is from

f(A) Zkl:[f()\k),

where f()\) is Gamma(7, 7). It is interesting to see that the proposed prior is
equivalent to the independent increment gamma process prior in Clayton (1991),
when 7y, is proportional to the length of the interval I;,. Although, we do not adapt
it in this paper, there has been considerable amount of efforts on the correlated
prior process including Arjas and Gasbarra (1994), Aslanidou et al. (1998) and
many others. :

Finally, in this paper, we empirically determine J as in Qiou et al. (1999),
but a random choice of J can be considered using the reversible jump MCMC by
Green (1995).

2.1.4. Prior distribution between models M and M. As noted in Section 2.1.1,
the model M; assumes the homogeneous variance of the frailty distribution and
M; assumes the heterogeneous variance structure depending on the covariate
(“sex” in this paper). Prior probability of each model is set to P(M;) = P(M3) =
0.5.

2.2. Connection of MLFM to existing models

The considered MLFM can be interpreted as extensions of some existing mod-
els (or problems) to survival data.

First, similar models are addressed in the context of the multi-level regression
model in the previous literature (Heagerty and Zeger, 2000, Section 5.2), but most
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of them are limited to non—survival data problems. A few of them on survival data
are Yau (2001), Maples et al. (2002) and Zbang and Steele (2004). In particular,
the random coefficient PHM by Maples et al. (2002) is a special case of our
MLFM. Second, in the PHFM, « is the scale parameter of marginal distribution
of the survival time as well as that of the frailty distribution. More specifically, in
the PHFM with gamma frailty distribution, the marginal distribution of observed
survival time is

£(t:8,0) = / £ (tlv; ) a(v; a)dv,

where f (t|v; 8) = Ao(t) exp(zT B+log v) exp{—Ao(t) exp(zT B+logv)} and Ag(t) =
f(f Ao(s)ds. For example, when g(v; o) is Gamma(a, &) with Ag(t) =1 and =0,
the marginal distribution f(t) becomes exp ((a + 1)log (o/(a +¢))). Thus, as a
model for survival times {tij,i =12,...,38, j = 1,2}, it can be considered as
an extension of the (mean variance) joint-model of the GLM (see McCullough
and Nelder, 1989) to the proportional hazard model. Finally, it also can be con-
sidered as an extension of the Behrens-Fisher problem to survival models. The
Behrens—Fisher problem concerns the inference on the difference between the
means of two normal populations whose ratio of variances is unknown. In our
model for the kidney data, we only consider the sex variable in both the model
for hazards rate, \(;;), and the variance components, ag, k£ = 0,1. Thus, testing
the regression coefficient 3 (of sex) is equivalent to testing the mean of survival
times between the male group and female group. Furthermore, the ratio of the
variances between survival times of male group and female group is unknown.

3. FuLL CONDITIONAL DISTRIBUTIONS AND MCMC

Recall that M; and M3z denote the PHFM with homogeneous frailty and
that with heterogeneous frailty, respectively. Then, the overall sampler has three
components: (1) the sampler in M, (2) the sampler in Mg, and (3) reversible
jump MCMC between the space of M; and M.

3.1. Sampling algorithms in M;

Given v;, the jt* recurrent time of the i** subject has a constant hazard of

hij = Aenijv;

in the k** interval (k = 1,2,...,J) with ni; = exp(z;;8). If the subject has
survived beyond the k** interval, i.e., t;; > sy, for sy defined in Section 2.1.2, the
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likelihood contribution is
exp ( — )\kAknijvi),

where Ay = sy, — sk_1. If the subject has failed or is censored in the k" interval,
i.e., sgp—1 < tj; < Sg, then the likelihood contribution is

(Aknijvi)% exp (= Me(tij — Sk—1)7i5v3),

where §;; = 1 if ¢;; is not censored; otherwise, it is 0.
Let D = (X, 4,t,v) denote the complete data and Dgps = (X, 4,t) denote the
observed data. Then, the complete data likelihood becomes

l(ﬁvz\.7y7a\DObs)

n m; gij L.
o I[11 { ( [Texo (- /\kAkiji)) ()‘gij-i-lnijvi)é”
k=1

i=1 j=1
X exp ( — Agyj+1 (tij - S!h‘j)nijvi) }5

where g;; is such that t;; € (Sgij,é’gij-t-l] = Iy, +1 and v = (vl, . ,’Un). Now we
specify the full conditional distributions of unknowns for the MCMC implemen-
tation.

First, with the prior Gamma(a, «), the full conditional distribution of v; for
each i =1,2,...,n, becomes

m;
P(vi‘ﬂ,g, Q, DObS) ~ Gamma(a + Z 0ij, o + Si),

=1
where
Gij
S = an]<z)‘kAk +>‘913+1( if Sgw))
§=1 k=1

Gij

— Z ez”ﬁ ( Z )\kAk + Ag”-i—l( 5] sgm))
j=1 k=1

Second, with the prior ﬂ(a) = Gamma(k, ), the full conditional of « is

¥gZe}

Ijz exp{ nz — logv; } X ﬂ(a).

P(Q|B,A,y, DObs) X
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The Metropolis—Hastings algorithm is implemented to get a sample from the
posterior distribution.
Third, with the prior 7(8), the full conditional of 8 is

P(ﬂ’& v, a, Dops) o exp (i i 5ijx;jﬂ) exp ( — ivi&-) X m(8).
i=1

i=1 j=1

The sample from the posterior distribution can be obtained using the Metropolis—
Hastings algorithm again.

Fourth, with the prior of piecewise independent gamma distribution, say
W()\k) = Gamma(7g, 7%), the full conditional of Ay is

P (|8, v, @, Dobs) ~ Gamma(di + 7, Vi + %),

where di is the number of failure times occurred in the interval I = (sk—_1, Sk)
and
Vi = Z Akmjv,- + Z (tij - sk_l)mjvi. (3.1)
(4,5)€R (4,5)€Dx
Ry, and Dy, in (3.1) is the set of indexes of the subjects who survive longer than
sx—1 and those of subjects who died in the interval I}, respectively.

3.2. Sampling algorithms in Ma

The only difference between the sampler of My from that of M; is the prior
distribution of v, which is, in My,

7r(U|Z = k) = Gamma(ak,ak) for k=1or 0,

where Z indicates the sex of a subject. Thus, the full conditional distributions of
8 and X\ are same as those in M;.

Let Ni, k = 1,0 be the index set of subjects whose Z value is k and ng = | N/,
the number of subjects in N;. Then, the full conditional distribution of oy is

P(aklﬂa_)‘_;ya DObs) X H W(U1|ak)7'('(ak-)
1€ Ny

nioy

= F(ng)nk exp { — ak ZeZ]Vk('l)z —logv;)} x m(ow).

The samples from the full conditionals are obtained using the Metropolis-Hastings
algorithm as in M;.
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3.8. Reversible MCMC between My and My

Among existing model choice techniques, we consider to use the reversible
jump MCMC algorithm. It enables us to simultaneously estimate the posterior
probabilities of several models under consideration and the parameters condi-
tional on a specific model.

Green (1995) developed the reversible jump algorithm, which generalizes the
Metropolis-Hastings algorithm into the dimension varying situation. Consider
the finite mixture model, for example. The dimension of the parameter space
depends on the number of components. When the number of components in
the model is also unknown, the ordinary MCMC algorithm cannot be directly
implemented since the dimension of all the unknowns is not fixed. The reversible
jump MCMC algorithm is designed in such a way that the sampler moves across
different dimensions. The following shows how to implement the reversible jump
MCMC into the models we have considered.

There are 4 types of possible moves between M; and May; the move within My,
the move within My, the move from M; to Mgy; and the move from Mo to M;.
The moves within each M; and Mj are discussed in the previous section and the
moves from one to the other model will be discussed here. Before describing the
details of each move, it should be remarked that, unlike mixture cases (Richardson
and Green, 1997), the allocation of the subjects to each homogeneous group in
the move from M; to My is pre-determined by the the covariate “sex” and the
computing time is almost same with that for the MCMC for the homogeneous
frailty model.

First, consider the move from M; to M;. The dimension of the parameter
space in My is greater than M; by 1 because we have (a1, ap) in My for the
variance of the frailty depending on the sex but only « in M;. For dimension
matching, we need an additional continuous random variable. Let w be a random
number from the exponential distribution with a rate of log2 (hence, the median
is 1). The candidate values oy and oy, then, can be defined as

a) =w- o and aoza/w.

When y = a and ¢ = (a1, ap), the sampler moves from M; to My with proba-
bility p = min(1, A), where

W(y/‘ﬂ,_A_, v, DObs)'rm (y/) 8y/

A = ) 3
ﬁy A: v, DObs)Tm (y)Q(w) } 6(3/7 w) I

=

(3.2)
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following the equation (7) in Section 3.1 in Richardson and Green (1997). Here,
the last term is the Jacobian arising at the transformation (y, w) — ¢/, that is,

ofy | | w o
Ay, w)| |1 /w —a/uw?

2.«
w

and the ratio of the other part for A is

7(y'|8, A, v, Dovs)rm (¥') _ ITic: [ien, 7 (vs]ox)m (o)
(|8, 2, v, Dobs)rm (y) 4 (w) in1 7 (vile)m(a)q(w)

where g(w) is the density function of the exponential distribution with the rate
of 2 evaluated at w, and r,,(y) is the probability of choosing move type m when
in state y, which is 1 in our case.

Next, let us consider the move from My to M;. When the chain moves from

M; to M, the parameters o and w are directly computed from a3 and o as:

a=+/o;-a and w=+/a/ap.
Subsequently, the sampler moves from My to M; with probability
min (1, A_l)

with appropriate substitutions in (3.2).
The posterior probability p(Mj| Data) is estimated by the relative frequency
of the number of iterations the sampler visits M.

3.4. Estimation of the hyper-parameters

In our full specification, there are three different hyper-parameters b, 7, and
k; b is from the prior distribution of 3, 7 is from the prior distribution of the
baseline hazards and & is from the prior distribution of the variance of frailty
distribution. It is often observed that the posterior distribution is quite sensitive
to the specification of the hyper-parameters. In such case, it is more sensible to
estimate those parameters in the empirical Bayesian point of view.

Let O = (T , 5) be the observed survival times and the censoring information,
where § = 1 (0 = 0) if T is uncensored time (censored time). Let W be other
random components including 8, A, v which are not observed. Then, by observing

af(olb, T, K:) . Blng(O,W|b, T, ;-;)
b, 7Ky 1(Ofb,, H)/ o(b, T, k) f(W|0,b,7,k)dW,
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maximizing marginal log-likelihood function log f (O]b, K, T) is equivalent to max-
imizing the expected full log-likelihood function (expectation is with respect to
the posterior distribution)

/log f(O,W]b,7,8) f(W]O,b,7,5) dW. (3.3)
Finally, for each b, k and 7, (3.3) can be approximated using the posterior samples

{W(i)}il by

B
/log F(O, Wb, 7, k) f(W]O,b, 7, k)dW ~ %Zlog F(O,WO)b, 1, k).
i=1

In the kidney data example from the next section, the posterior distribution
of M5 and others are not much sensitive to the specification of hyper-parameters
when 7 is sufficiently small (7 < 0.1) (see Figure 3.1). Finally, we set b2 = 1000,
k£ =0.05, and 7 = 0.1.

=1 w=0_1

fogl
Bl

gL
-0

gL
logL

-0
|

-1
|

-3
|

T T T
1 .1 o.0s 0.01 ©0.001

FiGURE 3.1 Plots of mean of penalized log likelihood from MCMC samples for different values
of hyper-parameters. (a) Kk = 1 (b)) k = 0.1 (¢) k = 0.05 (d) x = 0.01. In each plot, the
circle indicates the case for b? = 10, triangle for b* = 25, cross for b* = 100 and diamond for
b = 1000. The z-azis indicates the inverse of variance of w()\), which appears in G(7,7).
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4. EXAMPLES

4.1. Kidney data analysis

In this section, we applied the proposed MLFM to the kidney infection data in
McGilchrist and Aisbett (1991). We generated 20, 000 samples from the posterior
distribution. The fast convergence of the sampler could be checked from the log-
likelihood values of each Gibbs sample. Finally, 10,000 samples were selected
after 10,000 burn-in period for the inference of 3, A, v, and «. Hereafter, the
estimate refers the posterior sample mean.

The frailty v;s (for ¢ = 1,2,...,38) were assumed to be from Gamma(a,a)
in M; and they were assumed to be from Gamma(al,al) or Gamma(ao,ao)
relying on the sex variable in My. Each of the above a was assumed to be from
Gamma(m, k). Before we report our results, it should be pointed out that in
both the positive stable frailty model and the gamma frailty model, the frailty
estimates of male were more variable than those of female (see Figure 4.1 and
Qiou et al., 1999, p. 640).

Fralty
3
l
Fraily
3
L

T T Uy ¥
Female Male Female Male

(a) Positive Stable Frailties (b) Gamma Frailties

FIGURE 4.1 Boz-plots of posterior means of frailties by sex from two different frailty distributions
by Qiou et al. (1999). (a) posterior means assuming positive stable distribution for frailties, (b)
posterior means assuming gamma distribution for frailties.
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FIGURE 4.2 Density plots (first row) and boz-plots (second row) of estimated frailties over sex
and models. (a) and (b) : Density plot of posterior means of frailties with solid line for female
and dashed line for male. (c) and (d) : Bowz-plots of posterior means of frailties of female and

male for each model.

In our analysis, the frailty estimates in each group approximately had a mean
of one and, in the heterogeneous frailty model, the variability of the frailty es-
timates differed slightly between male and female groups, but it was not much
apparent as in Qiou et al. (1999) (see Figure 4.2). The frailty estimate of each
patient is presented in Table 4.1 for My and Mj separately.
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TABLE 4.1 Posterior means and standard deviations of frailties by sex for two different models.
M, denotes the case of homogeneous variance on the frailty, whereas Mz denotes the case of
heterogeneous variance

M, M,
Female Male Female Male
Mean SD Mean SD Mean SD Mean SD
1.32 0.78 1.47 0.77 1.31 0.76 1.42 0.79
0.54 0.31 1.02 0.51 0.50 0.31 0.96 0.51
0.95 0.46 1.08 0.54 0.96 0.51 1.07 0.58
0.58 0.34 1.64 0.91 0.54 0.34 1.78 1.08
0.98 0.48 0.58 0.35 1.00 0.55 0.52 0.35
1.62 0.89 1.15 0.65 1.75 0.96 1.22 0.70
0.95 0.52 0.18 0.18 0.96 0.57 0.14 0.15
1.27 0.65 0.96 0.48 1.37 0.78 0.93 0.53
0.59 0.40 1.26 0.64 0.57 0.43 1.24 0.67
0.45 0.31 0.71 0.42 0.38 0.28 0.64 0.40

0.83 0.41 0.82 0.47
0.80 0.40 0.78 0.44
0.63 0.41 0.60 0.44
1.04 0.58 - 1.07 0.66
0.64 0.38 0.61 0.41
1.49 0.79 1.54 0.98
1.05 0.58 1.10 0.68
0.71 0.39 0.67 0.38
0.95 0.46 0.96 0.51
1.47 0.78 1.56 0.87
1.20 0.59 1.26 0.67
1.42 0.73 1.45 0.79
1.20 0.69 1.19 0.71
1.12 0.55 1.17 0.59
0.85 0.46 0.88 0.53
1.33 0.67 1.41 0.78
0.80 0.52 0.82 0.65
1.13 0.64 1.18 0.77

The posterior probability of the heterogeneous model My was estimated by
the proportion of the iterations, where the sampler stayed in My. It was computed
as 10.06%. Thus, the observed data did not provide any statistically significant
preference between the homogeneous frailty model and the heterogeneous frailty
model. In the heterogeneous frailty model (Mz), the variance estimates of the
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TABLE 4.2 Posterior means of the regression coefficient of sex and the variances (the inverse
of as) of gamma frailty over two different models: Gamma denotes the estimates from gamma
Jrailty model listed in Table 4.1 in Qiou et al. (1999). M denotes the case of homogeneous
variance on the frailty, whereas Mz denotes the case of heterogeneous variance

Gamma M; Mo
Posterior  Posterior Posterior  Posterior Posterior  Posterior
Parameter mean SD mean SD mean SD
J5] -1.6200 0.4186 -1.4871 0.5027 -1.6122 0.5452
1/a 0.3268 0.1737 0.4737 0.2961 - -
1/ - - - - 0.5482 0.2869
1/ap - - - - 0.5702 0.3210

TABLE 4.3 Posterior means of baseline hazard rates denoted by X;, j =1,...,10 for the kidney
infection data: Gamma denotes the estimates from gamma frailty model listed in Table 4.1 in
Qiou et ol (1999). M denotes the case of homogeneous variance on the frailty, whereas Mo
denotes the case of heterogeneous variance

Gamma M, M
Posterior  Posterior Posterior  Posterior Posterior  Posterior
Parameter mean SD mean SD mean SD
A1 0.0015 0.0030 0.0212 0.0112 0.0232 0.0124
A2 0.0012 0.0025 0.0377 0.0215 0.0422 0.0255
A3 0.0011 0.0020 0.0833 0.0464 0.0901 0.0511
Aq 0.0010 0.0020 0.0583 0.0439 0.0650 0.0480
As 0.0012 0.0023 0.0150 0.0193 0.0163 0.0209
A6 0.0011 0.0024 0.0241 0.0193 0.0277 0.0212
A7 0.0011 0.0024 0.0514 0.0409 0.0606 0.0455
As 0.0014 0.0028 0.0426 0.0526 0.0497 0.0545
Ao 0.0056 0.0051 0.0251 0.0499 0.0307 0.0529
Ao 0.3667 0.1495 0.1594 0.2290 0.1982 0.2584

frailty distribution in the male group and the female group were 0.5702 and
0.5482, respectively. However, the variance estimate of the frailty distribution
in the homogeneous frailty model (M;) was estimated as 0.4737. It should be
noted that, unexpectedly, this variance estimate was smaller than both 0.5482
and 0.5702 in Mjy. This strange phenomena was an outcome of the prior effect
to the posterior distribution when the number of the observations were small; it
was expected that each of the above variance estimates was the average of the
prior information (forced that the variance was one) and the data information
(indicated that the variance was smaller than 1).

The baseline hazard function was modelled by a piecewise gamma distribu-
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tion. The break points of the time axis were chosen as {O, 10, 20, 30, 40, 50, 100,
200,300,400} as in Qiou et al. (1999) and the prior of the baseline hazards
in each interval was chosen independently and identically as Gamma(r, T) with
7 = 0.1. The estimates are reported in Table 4.3 and it is also interesting to see
the the estimate for the interval [400, co0) was much larger than those for other
intervals as in Qiou et al. (1999).

Finally, B was negatively estimated as —1.5555 whose absolute value was
larger than that from the homogeneous frailty (—1.4871) and smaller than that
from the heterogeneous frailty (—1.6122). the female patients had a lower risk for
infection. The posterior distribution of 8 in My was not much different from that
in M;. The posterior samples of 3 are plotted in Figure 4.3. Also, parameter
estimates are presented in Table 4.2.
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FIGURE 4.3 Estimated densities for the regression coefficient 8 from 20,000 iterations after
10,000 burn-in from two different models. The straight line denotes the estimated density from
M. and the dashed line from Mj. The values in the parentheses are the estimated posterior
means.

4.2. Simulated data examples

The kidney data analysis in the previous section showed the model uncertainty
between the heterogeneous frailty model and its homogeneous counterpart. In
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this section, we implemented a simulation study to investigate the performance
of the proposed Bayesian procedure for various magnitudes of the heterogeneity
in variance components and sample sizes.

The data sets were simulated from the PHFM with gamma frailty distribution.
The baseline hazard function was set to be constant over time as Ag(t) = 0.01
and the regression coeflicient for the single covariate x was § = 2.0. The number
of subjects (sample size) was n = 50 or n = 100, where the frailty for each
subject was from the Gamma(a, ;) or Gamma(wg, ap) according to . We
considered 4 choices of (a1, ap) having different magnitudes of heterogeneity;
(a1,0) = (0.1,10), (0.2,5), (0.5,2) and (1,1).

In the analysis, we used the same prior distributions with those in the kid-
ney example. The baseline hazards function followed a piecewise exponential
distribution with rate Ag, where each A\ was from Gamma(7, 7). The regression
coefficient 3 was from the Gaussian distribution with mean 0 and variance b.
The frailty v;s were assumed to be Gamma(a, @) in M and Gamma (o, 1) or
Gamma(ao, ao) according to the sex variable in My, where a, a1 and o followed
from Gamma(k, k). The hyper-parameters were b* = 1000, £ = 0.05 and 7 = 0.1
as in the kidney data analysis.

Figure 4.4 displays the posterior probabilities of M for several different val-
ues of variance components and the sample sizes. It showed that the posterior
probability of M, increased as the frailty became more heterogeneous. However,
its probability was still lower than than that of My even the frailty was very
heterogeneous (e.g. (a1,aq) = (0.1,10)) with moderate size n = 100.

TABLE 4.4 Mean and standard deviation of 8 estimates from 50 simulations when n = 50 and
n = 100

(o1, o)

n Model (01,10)  (02,5) (05,2) (1,1)
50 M, 2.239 (1.037) 2.463 (0.793) 2.441 (0.713) 2.305 (0.576)
M, 2.001 (1.020) 2.279 (0.787) 2.385 (0.679) 2.316 (0.556)
Model Avg. | 2181 (1.038) 2.427 (0.796) 2.434 (0.710)  2.305 (0.575)
100 M, 2.477 (0.023) 2.754 (0.512) 2.550 (0.573) 2.327 (0.314)
M- 2.255 (0.929) 2.592 (0.510) 2.486 (0.542) 2.330 (0.304)
Model Avg. | 2.389 (0.946) 2.717 (0.518) 2.542 (0.571) 2.328 (0.313)

Table 4.4 reported the average posterior mean of 3 over 50 data sets. It shows
that the model averaging estimate is adaptive in the sense that it was close to
the estimate from M; (or My) when the data is generated from M; (or My).
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FIGURE 4.4 Mean of estimated P(M1|x) from 50 simulated data sets.

5. DISCUSSION

In this paper, we consider a regression model for variance components in the
PHFM and propose a fully Bayesian procedure with the reversible jump MCMC
for the model uncertainty from the frailty distribution.

We conclude the paper with a few discussions not covered in the main body
of the paper. First, it should be pointed out that the required computing time
for the reversible jump MCMC is almost same with that of the MCMC for the
homogeneous frailty model since the random allocation of subjects into two ho-
mogeneous groups is guided by the covariates (sex in the Kidney data analysis).
Second, the procedure of this paper can straightforwardly be extended to multi-
sample problems (the regression covariate is discrete but has more than two dif-
ferent levels) with a more complicate RIMCMC. The extension to more general
settings such as the model with continuous covariate or the multiple regression
model may be still possible but requires a specific model for the variance com-
ponents as in Noh et al. (2006). Finally, the same issue in other survival models
such as the accelerated failure time model with the frailty does not much differ
from that in the PHFM.
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