• 제목/요약/키워드: Markov Regime Switching

검색결과 24건 처리시간 0.022초

A generalized regime-switching integer-valued GARCH(1, 1) model and its volatility forecasting

  • Lee, Jiyoung;Hwang, Eunju
    • Communications for Statistical Applications and Methods
    • /
    • 제25권1호
    • /
    • pp.29-42
    • /
    • 2018
  • We combine the integer-valued GARCH(1, 1) model with a generalized regime-switching model to propose a dynamic count time series model. Our model adopts Markov-chains with time-varying dependent transition probabilities to model dynamic count time series called the generalized regime-switching integer-valued GARCH(1, 1) (GRS-INGARCH(1, 1)) models. We derive a recursive formula of the conditional probability of the regime in the Markov-chain given the past information, in terms of transition probabilities of the Markov-chain and the Poisson parameters of the INGARCH(1, 1) process. In addition, we also study the forecasting of the Poisson parameter as well as the cumulative impulse response function of the model, which is a measure for the persistence of volatility. A Monte-Carlo simulation is conducted to see the performances of volatility forecasting and behaviors of cumulative impulse response coefficients as well as conditional maximum likelihood estimation; consequently, a real data application is given.

마코프 국면전환을 고려한 이자율 기간구조 연구 (The Behavior of the Term Structure of Interest Rates with the Markov Regime Switching Models)

  • 이유나;박세영;장봉규;최종오
    • 대한산업공학회지
    • /
    • 제36권3호
    • /
    • pp.203-211
    • /
    • 2010
  • This study examines a cointegrated vector autoregressive (VAR) model where parameters are subject to switch across the regimes in the term structure of interest rates. To employ the regime switching framework, the Markov-switching vector error correction model (MS-VECM) is allowed to the regime shifts in the vector of intercept terms, the variance-covariance terms, the error correction terms, and the autoregressive coefficient parts. The corresponding approaches are illustrated using the term structure of interest rates in the US Treasury bonds over the period of 1958 to 2009. Throughout the modeling procedure, we find that the MS-VECM can form a statistically adequate representation of the term structure of interest rate in the US Treasury bonds. Moreover, the regime switching effects are analyzed in connection with the historical government monetary policy and with the recent global financial crisis. Finally, the results from the comparisons both in information criteria and in forecasting exercises with and without the regime switching lead us to conclude that the models in the presence of regime dependence are superior to the linear VECM model.

OPTIMAL CONSUMPTION/INVESTMENT AND LIFE INSURANCE WITH REGIME-SWITCHING FINANCIAL MARKET PARAMETERS

  • LEE, SANG IL;SHIM, GYOOCHEOL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권4호
    • /
    • pp.429-441
    • /
    • 2015
  • We study optimal consumption/investment and life insurance purchase rules for a wage earner with mortality risk under regime-switching financial market conditions, in a continuous time-horizon. We apply the Markov chain approximation method and suggest an efficient algorithm using parallel computing to solve the simultaneous Hamilton-Jaccobi-Bellman equations arising from the optimization problem. We provide numerical results under the utility functions of the constant relative risk aversion type, with which we illustrate the effects of regime switching on the optimal policies by comparing them with those in the absence of regime switching.

금리스프레드를 이용한 신흥경제 국가의 불황 예측: 국면 전환 모형 vs. 프로빗 모형 (Predicting Recessions Using Yield Spread in Emerging Economies: Regime Switch vs. Probit Analysis)

  • 박기현
    • 국제지역연구
    • /
    • 제16권3호
    • /
    • pp.53-73
    • /
    • 2012
  • 본 논문에서는 금리 스프레드가 두 아시아 국가의 경기불황을 예측할 수 있는가를 살펴보았다. 이를 위해 세계시장에 상대적으로 개방이 많이 되어 있고 무역활동이 활발한 두 개의 신흥경제국가인 한국과 태국을 선정 하였다. 본 논문에서는 두 개의 국면(Two-regime Markov-Switching model)과 세 개의 국면(Three-regime Markov-Switching model)이 있는 마코프 국면 전환 모형을 이용하여 아시아 경제위기의 불황확률을 추정해 보았다. 추정결과 태국의 금리스프레드는 태국의 불황 확률을 반영하였으나 한국의 금리스프레드는 불황 예측을 하지 못하는 것으로 나타났다. 또한, 세 개의 국면이 있는 모형이 두 개의 국면 있는 모형보다 아시아 금융위기의 불황예측에서 우수함을 밝혔다. 또한 본 논문에서는 경기상승과 경기불황이 있을 때 얼마나 지속되는가의 지속성(Duration)을 추정하였다. 이는 경기가 불황으로 움직일 때는 생산이 급격히 감소하는 반면 저점을 찍고 경기가 살아날 때는 생산이 천천히 오른다는 경기불황과 호황의 비대칭적 움직임을 테스트 하였다. 한편 마코프 국면 전환 모형의 결과와 전통적으로 많이 사용되어 왔던 프로빗(Probit) 모형의 결과를 비교 분석 하였다. 마코프 국면전환 모형이 프로빗 모형보다 경기변동의 예측력을 크게 향상시키지는 못하는 것으로 나타났다.

AN INVESTIGATION OF THE KOREAN GENERAL INSURANCE INDUSTRY: EVIDENCE OF STRUCTURAL CHANGES AND IMPACT OF MACRO-ECONOMIC FACTORS ON LOSS RATIOS

  • Thompson, Ephraim Kwashie;Kim, So-Yeun
    • East Asian mathematical journal
    • /
    • 제38권5호
    • /
    • pp.617-641
    • /
    • 2022
  • In this study, we first present a brief overview of the Korean general insurance market. We then explore the characteristics of the loss ratios of the Korean general insurance industry and apply Markov regime-switching methodology to model the loss ratios of these insurance companies by line of business based on changes in economic regimes. This study applies a number of confirmatory tests such as Zivot-Andrews test (2002), the Chow (1960) test and the Bai and Perron (1998) to confirm the presence of structural breaks in the time series of the loss ratios by line of business. Then, we employ Markov regime-switching methodology to model these loss ratios. We find empirical evidence that the loss ratios reported by insurance companies in Korea is characterized by two distinct regimes; a regime with high volatility and a regime with low volatility, except for vehicle insurance. Our analyses suggest that macro-economic conditions have significant explanatory effect on loss ratios but the direction of effect differs based on the line of business and the regime. Unlike previous studies that have applied linear regressions or divided the samples into different periods and then apply linear regressions to model loss ratios, we argue for the application of Markov regime-switching methodology, which are able to automatically distinguish the different regimes that may be associated with the movements of loss ratios based on differing economic conditions and regulatory upheavals. This study provides a more in depth understanding of loss ratios in the general insurance industry and will be of value to insurance practitioners in modelling the loss ratios associated with their businesses to aid in their decision making. The results may also provide a basis for further studies in other markets apart from Korea as well as for shaping policy decisions related to loss ratios.

심박간격의 마코프 국면전환 모형화를 통한 심방세동 탐지 (Detection of Atrial Fibrillation Using Markov Regime Switching Models of Heart Rate Intervals)

  • 정용한;김희영
    • 대한산업공학회지
    • /
    • 제42권4호
    • /
    • pp.290-295
    • /
    • 2016
  • This paper proposes a new method for the automatic detection of atrial fibrillation (AF), using Markov regime switching GARCH (1, 1) model. The proposed method is based on the observation that variability patterns of heart rate intervals during AF significantly differ from regular patterns. The proposed method captures the different patterns of heart rate intervals between two regimes : normal and AF states. We test the proposed method using Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) atrial fibrillation database, and demonstrate the effectiveness of the proposed method.

Variance Swap Pricing with a Regime-Switching Market Environment

  • Roh, Kum-Hwan
    • Management Science and Financial Engineering
    • /
    • 제19권1호
    • /
    • pp.49-52
    • /
    • 2013
  • In this paper we provide a valuation formula for a variance swap with regime switching. A variance swap is a forward contract on variance, the square of realized volatility of the underlying asset. We assume that the volatility of underlying asset is governed by Markov regime-switching process with finite states. We find that the proposed model can provide ease of calculation and be superior to the models currently available.

국면전환 임계 자기회귀 분석을 위한 베이지안 방법 비교연구 (A Comparison Study of Bayesian Methods for a Threshold Autoregressive Model with Regime-Switching)

  • 노태영;조성일;이령화
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.1049-1068
    • /
    • 2014
  • 자기회귀 모형(autoregressive model)은 일변량(univaraite) 시계열자료의 분석에서 널리 사용되는 방법 중 하나이다. 그러나 이 방법은 자료에 일정한 추세가 있다고 가정하기 때문에 자료에 분절(structural break)이 존재할 때 적절하지 않을 수 있다. 이러한 문제점을 해결하기 위한 방법으로 국면전환(regime-switching) 모형인 임계자기회귀 모형(threshold autoregressive model)이 제안되었는데 최근 지연 모수(delay parameter)을 포함한 이 국면전환(two regime-switching) 모형으로 확장되어 많은 연구가 활발히 진행되고 있다. 본 논문에서는 이 국면전환 임계자기회귀 모형을 베이지안(Bayesian) 관점에서 살펴본다. 베이지안 분석을 위해 모수적 임계자기 회귀 모형 뿐만 아니라 디리슐레 과정(Dirichlet Process) 사전분포를 이용하는 비모수적 임계자기 회귀 모형을 고려하도록 한다. 두 가지 베이지안 임계자기 회귀 모형을 바탕으로 사후분포를 유도하고 마코프 체인 몬테 카를로(Markov chain Monte Carlo) 방법을 통해 사후추론을 실시한다. 모형 간의 성능을 비교하기 위해 모의실험을 통한 자료 분석을 고려하고, 더 나아가 한국과 미국의 국내 총생산(Gross Domestic Product)에 대한 실증적 자료 분석을 실시한다.