• 제목/요약/키워드: Markov Chain Method

검색결과 339건 처리시간 0.022초

건전성 예측을 위한 모델변수 추정방법의 비교 (A Comparison Study of Model Parameter Estimation Methods for Prognostics)

  • 안다운;김남호;최주호
    • 한국전산구조공학회논문집
    • /
    • 제25권4호
    • /
    • pp.355-362
    • /
    • 2012
  • 건전성 예측은 구조물의 고장이 발생될 때까지 남은 시간인 잔존유효수명을 예측하는 것으로, 이는 안전 및 정비 계획과 직접적으로 연관되기 때문에 매우 중요하다. 건전성 예측방법에는 물리모델 기반방법, 데이터 기반방법과 두 방법의 장점을 통합하는 방법이 있으며, 본 연구에서는 잔존수명 예측의 정확도가 모델변수 추정과 직접적으로 관련되는 물리모델 기반 건전성 예측에 초점을 맞춘다. 물리모델기반 건전성 예측에서는 모델변수 추정을 통해 시스템 상태의 장기 예측이 가능하지만, 대부분의 실제 구조물들의 상태모델은 여러 개의 모델변수를 포함함은 물론이고, 그 변수들이 서로 상관되어 있기 때문에 모델변수를 추정하는 일은 간단한 문제가 아니다. 본 연구에서는 물리모델 기반 건전성 예측을 위한 세 가지 변수 추정방법들의 차이를 논한다. 이 세 가지 방법들은 파티클 필터, 전반적인 베이지안 접근법, 그리고 순차적인 베이지안 접근법으로 모두 베이지안 추론이라는 하나의 이론적 바탕에 기반하지만, 샘플링 방법이나 갱신 절차 등에서 차이가 있다. 균열성장을 표현하는 Paris 모델의 변수 추정을 통해 세 가지 방법의 차이점이 논해지고, 건전성 예측 메트릭을 이용하여 정량적 차이를 표현한다. 파티클 필터방법이 건전성 예측 메트릭 측면에서 가장 높은 성능을 나타내었지만, 전반적인 베이지안 방법은 파티클 필터방법과 근소한 차이를 보이면서도 데이터가 집단으로 존재할 때에는 가장 효율적인 방법으로 나타났다.

점봉산(點鳳産) 일대 천연활엽수림(天然闊葉樹林)의 지형적(地形的) 위치(位置)에 따른 천이(遷移) 경향(傾向) 분석(分析) (The Analysis of Successional Trends by Topographic Positions in the Natural Deciduous Forest of Mt. Chumbong)

  • 이원섭;김지홍;김광택
    • 한국산림과학회지
    • /
    • 제89권5호
    • /
    • pp.655-665
    • /
    • 2000
  • 산림의 지형적 위치에 따라 수종 구성에 차이가 있을 것이라는 가정 하에, 점봉산 일대 천연활엽수림의 세가지 지형적 위치(계곡, 산복, 능선)에 대한 천이 경향을 비교 분석하였다. 계곡, 산복, 능선에서 각각 20개씩 총 60개의 $20m{\times}20m$ 표본구를 설정하여 현재 상층 임관을 형성하는 상층목들의 수종, 수고. DBH를 조사하고 상층목 밑에서 자라는 하층목의 수종을 조사했다. 시간이 지나면서 상층목이 그 밑에서 자라는 하층목에 의해서 대치되는 천이 경향을 Markov chain의 통계학적 이론을 응용한 추이행렬 모델을 사용하여 예측했다. 연구 결과, 계곡에서는 현재 우점 수종인 신갈나무와 물푸레나무가 각각 약 23%와 약 21%의 구성 비율에서 약 200년 후에 이르게될 안정상태에 가면 두 수종 모두 약 4% 정도로 현저히 감소할 것으로 추정되었다. 반면에, 전나무, 고로쇠나무, 피나무, 난티나무 동은 안정상태에서 증가할 것으로 예측되었다. 산복에서는 약 250년 후에 이르게될 안정상태가 되면, 현재 우점 수종인 가래나무, 음나무, 피나무가 현재의 구성 비율인 15%, 8%. 15%에서 각각 2%, 1%, 5%로 현저히 감소할 것이 괄목할 만한 결과였다. 능선에서는 현재의 절대 우점 수종인 신갈나무가 58%의 구성 비율에서 약 200년 후에 이르게될 안정상태에서는 8%로 상당히 감소하고, 고로쇠나무와 피나무가 현재의 4%와 3% 의 구성 비율이 각각 20%와 40%로 증가할 것으로 예측되었다. 전반적으로 연구대상 산림은 극상 군집이 아닌 천이가 진행 중인 상태이며, 입지 조건과 식생 발달 상황에서 여러 가지의 변수가 작용하겠지만, 상층 임관의 수종 구성 상 안정상태에 도달하려면 약 200년 이상의 기간이 소요될 것으로 추정되었다.

  • PDF

폭염재해의 재해취약성분석 및 리스크 평가 비교 (Comparison of Disaster Vulnerability Analysis and Risk Evaluation of Heat Wave Disasters)

  • 설유정;김호용
    • 한국지리정보학회지
    • /
    • 제26권1호
    • /
    • pp.132-144
    • /
    • 2023
  • 최근 기후변화 기온상승 따른 폭염의 발생 빈도와 강도가 증가하고 있다. 이에 본 연구는 정부가 채택한 기후변화 재해취약성분석에 따른 폭염 재해취약성분석과 최근 IPCC에서 강조하고 있는 재해평가 방법인 리스크 평가라는 두 가지의 폭염재해 평가를 부산광역시 폭염을 대상으로 평가과정과 평가결과를 비교하고 시사점을 도출하고자하였다. 기후변화 재해취약성분석은 정부에서 마련한 매뉴얼과 가이드라인을 기반으로 평가하고 있다. 리스크 평가는 재해발생가능성과 그 영향의 곱으로 평가될 수 있으며, 재해발생가능성을 산출함에 있어서 사전 정보를 활용하여 사후확률을 추론하는 베이지안 추정법을 기반으로 한 마르코브체인 몬테카를로 시뮬레이션을 활용하여 평가하고 있다. 분석 결과 부산광역시를 대상으로 한 두 가지 평가 결과는 폭염 취약 지역의 공간분포에서 다소 차이가 발생하였다. 기후변화에 따른 재해 취약 지역을 적절하게 평가하기 위해서는 기후변화 재해취약성분석과 리스크 평가의 분석 과정 및 결과를 살펴보고 각각의 방법론에 대한 고려와 그에 맞는 대응을 마련해야하며, 이를 통해 장기적인 폭염 대응 방안을 마련할 수 있을 것으로 사료된다.

Bayesian MCMC를 이용한 저수량 점 빈도분석: II. 적용과 비교분석 (At-site Low Flow Frequency Analysis Using Bayesian MCMC: II. Application and Comparative Studies)

  • 김상욱;이길성
    • 한국수자원학회논문집
    • /
    • 제41권1호
    • /
    • pp.49-63
    • /
    • 2008
  • 본 연구에서는 Bayesian MCMC 방법과 2차 근사식을 이용한 최우추정(Maximum Likelihood Estimation, MLE)방법 방법을 이용하여 낙동강 유역의 본류지점인 낙동, 왜관, 고령교, 진동지점에 대한 점 빈도분석을 수행하고 그 결과로써 불확실성을 포함한 빈도곡선을 작성하였다. 통계적 실험을 통한 두 가지 추정방법의 분석을 위하여 먼저 자료의 길이가 100인 8개의 합성 유량자료 셋을 생성하여 비교 연구를 수행하였으며, 이를 자료길이 36인 실측 유량 자료의 추정결과와 비교하였다. Bayesian MCMC 방법에 의한 평균값과 2차 근사식을 이용한 취우추정방법에 의한 모드에서의 2모수 Weibull 분포의 모수 추정값은 비슷한 결과를 보였으나, 불확실성을 나타내는 하한값과 상한값의 차이는 Bayesian MCMC 방법이 2차 근사식을 이용한 취우추정방법보다 불확실성을 감소시켜 나타내는 것을 알 수 있었다. 또한 실측 유량자료를 이용한 결과, 2차 근사식을 이용한 취우추정방법의 경우 자료의 길이가 감소됨에 따라 불확실성의 범위가 합성유량자료를 사용한 경우에 비해 상대적으로 증가되지만, Bayesian MCMC 방법의 경우에는 자료의 길이에 대한 영향이 거의 없다는 결론을 얻을 수 있었다. 그러므로 저수량 빈도분석을 수행하기 위해 충분한 자료를 확보할 수 없는 국내의 상황을 감안할 때, 위와 같은 결론으로부터 Bayesian MCMC 방법이 불확실성을 표현하는데 있어서 2차 근사식을 이용한 최우추정방법에 비해 합리적일 수 있다는 결론을 얻을 수 있었다.

Bayesian 모형을 이용한 단일사상 강우-유출 모형의 불확실성 분석 (Uncertainty Assessment of Single Event Rainfall-Runoff Model Using Bayesian Model)

  • 권현한;김장경;이종석;나봉길
    • 한국수자원학회논문집
    • /
    • 제45권5호
    • /
    • pp.505-516
    • /
    • 2012
  • 본 연구에서는 국내외에서 범용되고 있는 단일강우사상 모형인 미육군공병단의 HEC-1 모형을 이용하여 대청댐 유역의 실측 강우-유출 사상을 중심으로 강우-유출 모의를 수행하였으며, 매개변수 검정에는 실제 대청댐의 시간당 유입량을 기준으로 검정을 실시하였다. HEC-1 모형에는 매개변수를 자동으로 최적화시키는 프로그램이 내장되어 있으나 본 연구의 대상유역과 같이 다수의 소유역이 있는 경우, 매개변수 추정시 매개변수 중 일부는 수렴되지 못하고 발산하는 문제가 있었으며, 첨두유량의 추정능력 역시 저하되는 문제를 보였다. 따라서 이러한 HEC-1 모형의 매개변수의 불확실성을 고려하기 위한 방안으로 Bayesian 모형을 HEC-1모형에 연동시켜 활용하였으며, 기존 HEC-1 강우-유출 모형에 적용할 수 있는 매개변수 최적화 및 불확실성 정량화를 위해 HEC-1 강우-유출 모형 매개변수는 SCS 1개, Clark 단위도 2개를 Bayesian MCMC 기법을 적용하여 매개변수간 조건부확률로 모의발생을 한 후, Bayesian 모형으로부터 각 매개변수의 사후분포(posterior distribution)를 추정하여 사후분포의 추정이 매개변수의 불확실성 정량화를 수행하였다. 본 연구를 통해 제안된 BHEC-1 모형을 대상으로 대청댐 유역에 실측 강우-유출사상에 대해서 모형의 적합성을 평가한 결과, 7개 유역의 21개의 매개변수가 해의 발산 없이 안정된 매개변수 추정이 가능하였다. 한편, Bayesian 모형을 근간으로 하기 때문에 최종결과로서 매개변수들의 사후분포(posterior)의 추정이 가능하여 향후 홍수빈도곡선 유도, 댐 위험도분석과 기후변화 문제와 같은 다양한 수문학적 문제의 연구에 적용 가능할 것으로 전망된다.

베이지안 순서형 프로빗 준모수 회귀 모형 : 국민건강영양조사 2016 자료를 통한 흡연양태와 커피섭취 간의 관계 분석 (Bayesian ordinal probit semiparametric regression models: KNHANES 2016 data analysis of the relationship between smoking behavior and coffee intake)

  • 이다솜;이은지;조성일;최태련
    • 응용통계연구
    • /
    • 제33권1호
    • /
    • pp.25-46
    • /
    • 2020
  • 본 논문에서는 Bayesian spectral analysis regression (BSAR) 방법론을 이용한 베이지안 순서형 프로빗 준모수 회귀모형에 대해서 고찰한다. 순서형 프로빗 회귀모형은 순서가 있는 범주형 자료를 모형화하는 방법으로, 정규 분포의 분포함수의 역함수인 프로빗 연결함수를 이용해 각 범주의 확률과 설명변수을 연결함으로써 반응변수의 확률을 모형화한다. 베이지안 프로빗 회귀 모형은 정규 분포를 따르는 잠재변수를 도입함으로써 사후 분포 도출을 용이하게 하고, 절단점에 따라 나뉘어지는 잠재변수들의 값에 따라서 반응 변수들이 범주화된다. 본 논문에서는 이러한 잠재 변수 방법을 확장해 BSAR 방법론에 기반하여 단조증가/감소와 같은 형태제약을 반영할 수 있는 베이지안 이항형 및 순서형 프로빗 준모수 회귀모형에 대해 연구한다. 모의실험을 통하여 이항형 프로빗 준모수 회귀모형과 기존의 다른 모형들 간의 적합결과를 비교하고, 형태 제약에 따른 순서형 프로빗 준모수 회귀모형의 적합결과를 비교 분석하도록 한다. 아울러, 국민건강영양조사 제 7기 1차년도 (2016) 자료(Korean National Health and Nutrition Examination Survey (KNHANES), 2016)를 바탕으로, 본 논문에서 고찰한 이항형 및 순서형 프로빗 준모수 회귀모형을 적용하여, 흡연양태와 커피섭취 간의 관계에 대한 실증적 분석을 수행한다.

시스템 내 고객 수에 따라 서비스율과 도착율을 조절하는 M/G/1/K 대기행렬의 분석 (Analysis of an M/G/1/K Queueing System with Queue-Length Dependent Service and Arrival Rates)

  • 최두일;임대은
    • 한국시뮬레이션학회논문지
    • /
    • 제24권3호
    • /
    • pp.27-35
    • /
    • 2015
  • 대기행렬 시스템에는 고객들의 대기시간이 지나치게 길어지는 것을 막기 위해 다양한 정책들이 적용되는데, 본 연구에서는 고객숫자에 따른 제어 정책을 갖는 유한용량 M/G/1/K 대기행렬을 분석한다. 고객의 숫자에 따라 서버의 서비스율과 고객의 도착율을 조절하는 정책이다. 두 개의 한계점(thresholds) $L_1$$L_2$($${\geq_-}$$L1)를 설정하고 시스템 내 고객의 숫자가 $L_1$보다 작을 때는 시스템은 보통(또는 상대적으로 느린)의 서비스율(service rate)과 보통의 도착율(arrival rate)을 갖는다. 고객의 숫자가 증가하여 $L_1$이상이고 $L_2$보다 작으면 도착율은 그대로 이지만 서비스율을 증가시켜 빠르게 서비스한다. 이후 고객의 숫자가 더욱 증가하여 $L_2$ 이상이면 고객의 도착율도 작은 값으로 바꾸어 고객을 덜 입장시킨다. 위 정책을 갖는 M/G/1/K 대기행렬을 내재점 마코프 체인과 준-마코프 과정을 이용하여 분석하고 수치예제를 제시한다.

영 과잉 순서적 프로빗 모형을 이용한 한국인의 음주자료에 대한 베이지안 분석 (Bayesian Analysis of Korean Alcohol Consumption Data Using a Zero-Inflated Ordered Probit Model)

  • 오만숙;오현탁;박세미
    • 응용통계연구
    • /
    • 제25권2호
    • /
    • pp.363-376
    • /
    • 2012
  • 순서적 다항 반응변수의 경우 종종 과도하게 많은 수의 관측치가 0 범주에서 발생하는 영 과잉 특성을 지닌다. 이러한 영 과잉 자료에서 0범주를 발생시키는 요인이 여러 개 존재할 때 일반적인 순서적 프로빗 모형은 자료를 설명함에 있어서 한계를 지닌다. 본 논문에서는 영 과잉 특성을 반영한 이 단계 영 과잉 순서적 프로빗 모형의 베이지안 분석기법을 제시하고 이를 2008년도 통계청에서 조사한 한국인의 음주소비 자료에 적용시킨다. 첫 번째 단계에서는 음주소비가 하나도 없다고 답한 0 범주에 속하는 비음주자들을 신념 또는 영구적 건강상의 문제 등으로 상황에 관계없이 음주를 하지 않는 절대적 비음주자(genuine non-drinker, non-participant)와 현재 소비가 없지만 상황에 따라 음주자가 될 가능성이 있는 잠재적 음주자(zero consumption potential drinker)로 구분하는 프로빗 모형을 적용시켜 분석한다. 두 번째 단계에서는 잠재적 음주자와 1 이상의 범주에 속하는 실제적 음주자를 합하여 음주자 집단으로 보고 이에 대하여 순서적 프로빗 모형을 적용하여 분석한다. 분석결과, 비음주자 중 약 30%가 절대적 비음주자로 음주자료가 일반적 순서적 자료에 비하여 뚜렷한 영 과잉 특성을 가짐을 알 수 있었다. 각 변수의 한계효과를 분석함으로써 같은 설명변수가 절대적 비음주자와 잠재적 음주자에 미치는 영향이 서로 반대로 나타날 수 있음을 발견하였고, 따라서 한국인의 음주자료에 대하여 제안된 영 과잉 순서적 프로빗 모형이 유용함을 보여주었다.

일 강수발생모형을 이용한 월 단위 GCM의 축소기법에 관한 연구 (Downscaling Technique of Monthly GCM Using Daily Precipitation Generator)

  • 경민수;이정기;김형수
    • 대한토목학회논문집
    • /
    • 제29권5B호
    • /
    • pp.441-452
    • /
    • 2009
  • 본 연구에서는 IPCC DDC를 통해서 제공되는 월 단위 기후모형의 결과를 바탕으로 일 강수를 발생할 수 있는 일 강수 발생모형을 제안하고, 이를 이용해 기후변화가 일 강수빈도에 미치는 영향평가 기법을 기상청산하 서울지점을 대상으로 제시하고자 하였다. 본 연구에서 제안하는 일 강수발생모형은 2 state 마코브 체인 모형을 기반으로 개발되었으며, 강수를 발생시키는데 필요한 천이확률과 강수의 양을 결정짓는 Gamma-2 분포의 규모매개변수 및 형상매개변수는 회귀분석에 의한 월총강수량과의 관계를 통해서 산정되었다. 제시된 회귀분석 결과에 기후모형으로부터 K-NN방법에 의해서 서울지점으로 축소된 월 총강수량을 적용하여 기후변화가 고려된 일 강수를 발생시켰다. 기후모형으로는 BCM2모형을 사용하였으며, 20c3m 시나리오를 기준시나리오로 하여 A2 시나리오에서의 일 강우빈도의 차이를 산정하여 관측된 일 강우 빈도에 적용하였다. 빈도해석을 위한 분포형으로는 Gumbel분포를 선정하였으며, 매개변수 추정을 위하여 확률가중모멘트 방법을 적용하였다. 연구결과 미래 서울지역의 빈도별 일 강수량은 2020s에는 다소 감소, 2050s, 2080s 에는 다소 증가하는 것으로 예상 되었다.