• 제목/요약/키워드: Markov Chain Method

검색결과 339건 처리시간 0.027초

A Study on Character Recognition using HMM and the Mason's Theorem

  • Lee Sang-kyu;Hur Jung-youn
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.259-262
    • /
    • 2004
  • In most of the character recognition systems, the method of template matching or statistical method using hidden Markov model is used to extract and recognize feature shapes. In this paper, we used modified chain-code which has 8-directions but 4-codes, and made the chain-code of hand-written character, after that, converted it into transition chain-code by applying to HMM(Hidden Markov Model). The transition chain code by HMM is analyzed as signal flow graph by Mason's theory which is generally used to calculate forward gain at automatic control system. If the specific forward gain and feedback gain is properly set, the forward gain of transition chain-code using Mason's theory can be distinguished depending on each object for recognition. This data of the gain is reorganized as tree structure, hence making it possible to distinguish different hand-written characters. With this method, $91\%$ recognition rate was acquired.

  • PDF

DTN에서 Markov Chain을 이용한 노드의 이동 예측 기법 (A Prediction Method using Markov chain in DTN)

  • 전일규;신규영;김형준;오영준;이강환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.111-112
    • /
    • 2015
  • 본 논문에서는 Delay Tolerant Networks(DTNs)에서 Markov chain으로 노드의 속성 정보 변화율을 분석하여 노드의 이동 경로를 예측하는 알고리즘을 제안한다. 기존 DTN에서 예측기반 라우팅 기법은 노드가 미리 정해진 스케줄에 따라 이동한다. 이러한 네트워크에서는 스케줄을 예측할 수 없는 환경에서 노드의 신뢰성이 낮아진다. 본 논문에서는 일정 구간의 노드의 속성 정보의 시간에 따른 변화율을 Markov chain을 이용하여 노드의 이동 경로를 예측하는 알고리즘을 제안한다. 제안하는 알고리즘은 노드의 속성 정보 중 노드의 속도와 방향성을 근사한 후, 변화율을 분석하고 이로부터 Markov chain을 이용하여 확률전이 매트릭스를 생성하여 노드의 이동 경로를 예측하는 알고리즘이다. 주어진 모의실험 환경에서 노드의 이동 경로 예측을 통해 중계 노드를 선정하여 라우팅 함으로써 네트워크 오버헤드와 전송 지연 시간이 감소함을 보여주고 있다.

  • PDF

DTN에서 속성 정보 변화에 따른 노드의 이동 예측 기법 (A Prediction Method using property information change in DTN)

  • 전일규;이강환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.425-426
    • /
    • 2016
  • 본 논문에서는 Delay Tolerant Networks(DTNs)에서 노드의 속성 정보를 Markov Chain으로 분석하여 노드의 이동 경로를 예측하는 알고리즘을 제안한다. 기존 DTN에서 예측기반 라우팅 기법은 노드가 미리 정해진 스케줄에 따라 이동하거나 노드 간 접촉정보와 같은 추가 정보가 필요하다. 이러한 네트워크에서는 추가적인 정보가 없는 경우 노드의 신뢰성이 낮아진다. 본 논문에서 제안하는 알고리즘은 노드의 속성 정보 중 노드의 속도와 방향성을 상태로 맵핑한 후, Markov chain을 이용하여 확률전이 매트릭스를 생성하여 노드의 이동 경로를 예측하는 알고리즘이다. 주어진 모의실험 환경에서 노드의 이동 경로 예측을 통해 중계 노드를 선정하여 라우팅 함으로써 메시지 전송률이 증가하고 전송 지연 시간이 감소함을 보여주고 있다.

  • PDF

마코브 연산 기반의 함정 분산 제어망을 위한 실시간 고장 노드 탐지 기법 연구 (Markov Model-Driven in Real-time Faulty Node Detection for Naval Distributed Control Networked Systems)

  • 노동희;김동성
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1131-1135
    • /
    • 2014
  • This paper proposes the enhanced faulty node detection scheme with hybrid algorithm using Markov-chain model on BCH (Bose-Chaudhuri-Hocquenghem) code in naval distributed control networked systems. The probabilistic model-driven approach, on Markov-chain model, in this paper uses the faulty weighting interval factors, which are based on the BCH code. In this scheme, the master node examines each slave-nodes continuously using three defined states : Good, Warning, Bad-state. These states change using the probabilistic calculation method. This method can improve the performance of detecting the faulty state node more efficiently. Simulation results show that the proposed method can improve the accuracy in faulty node detection scheme for real-time naval distributed control networked systems.

Markov Chain을 응용한 학습 성과 예측 방법 개선 (Improving learning outcome prediction method by applying Markov Chain)

  • 황철현
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.595-600
    • /
    • 2024
  • 학습 성과를 예측하거나 학습 경로를 최적화하는 연구 분야에서 기계학습과 같은 인공지능 기술의 사용이 점차 증가하면서 교육 분야의 인공지능 활용은 점차 많은 진전을 보이고 있다. 이러한 연구는 점차 심층학습과 강화학습과 같은 좀 더 고도화된 인공지능 방법으로 진화하고 있다. 본 연구는 학습자의 과거 학습 성과-이력 데이터를 기반으로 미래의 학습 성과를 예측하는 방법을 개선하는 것이다. 따라서 예측 성능을 높이기 위해 Markov Chain 방법을 응용한 조건부 확률을 제안한다. 이 방법은 기계학습에 의한 분류 예측에 추가하여 학습자가 학습 이력 데이터를 분류 예측에 추가함으로써 분류기의 예측 성능을 향상 시키기 위해 사용된다. 제안 방법의 효과를 확인하기 위해서 실증 데이터인 '교구 기반의 유아 교육 학습 성과 데이터'를 활용하여 기존의 분류 알고리즘과 제안 방법에 의한 분류 성능 지표를 비교하는 실험을 수행하였다. 실험 결과, 분류 알고리즘만 단독 사용한 사례보다 제안 방법에 의한 사례에서 더 높은 성능 지표를 산출한다는 것을 확인할 수 있었다.

Markov 연쇄 MCM을 이용한 마이크로 흐름센서 열전달 해석 (Thermal Transfer Analysis of Micro Flow Sensor using by Markov Chain MCM)

  • 차경환;김태용
    • 한국정보통신학회논문지
    • /
    • 제12권12호
    • /
    • pp.2253-2258
    • /
    • 2008
  • 산화물 반도체 감지막이 동작온도에 따라 감응특성을 가지는 마이크로 흐름센서를 설계하기 위해서 통계적 수법에 기초한 Markov 체인 MCM을 이용하여 기초방정식을 정식화하고 마이크로 소자의 열 전달특성을 해석하였다. 계산 결과를 통하여 기존 유한차분법이 가지는 계산 정밀도와 차이가 없음을 확인하였다. 본 논문에서 제안한 Markov 체인 MCM을 활용하면 다양한 마이크로 소자의 열전달 특성과 같은 물리적 특성을 해석하고 설계하는데 유용할 것으로 판단된다.

마르코프 연쇄 몬테 카를로 샘플링과 부분집합 시뮬레이션을 사용한 컨테이너 크레인 계류 시스템의 신뢰성 해석 (Reliability Analysis of Stowage System of Container Crane using Subset Simulation with Markov Chain Monte Carlo Sampling)

  • 박원석;옥승용
    • 한국안전학회지
    • /
    • 제32권3호
    • /
    • pp.54-59
    • /
    • 2017
  • This paper presents an efficient finite analysis model and a simulation-based reliability analysis method for stowage device system failure of a container crane with respect to lateral load. A quasi-static analysis model is introduced to simulate the nonlinear resistance characteristics and failure of tie-down and stowage pin, which are the main structural stowage devices of a crane. As a reliability analysis method, a subset simulation method is applied considering the uncertainties of later load and mechanical characteristic parameters of stowage devices. An efficient Markov chain Monte Carlo (MCMC) method is applied to sample random variables. Analysis result shows that the proposed model is able to estimate the probability of failure of crane system effectively which cannot be calculated practically by crude Monte Carlo simulation method.

MCMC 방법을 이용한 자율주행 차량의 보행자 탐지 및 추적방법 (Pedestrian Detection and Tracking Method for Autonomous Navigation Vehicle using Markov chain Monte Carlo Algorithm)

  • 황중원;김남훈;윤정연;김창환
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.113-119
    • /
    • 2012
  • In this paper we propose the method that detects moving objects in autonomous navigation vehicle using LRF sensor data. Object detection and tracking methods are widely used in research area like safe-driving, safe-navigation of the autonomous vehicle. The proposed method consists of three steps: data segmentation, mobility classification and object tracking. In order to make the raw LRF sensor data to be useful, Occupancy grid is generated and the raw data is segmented according to its appearance. For classifying whether the object is moving or static, trajectory patterns are analysed. As the last step, Markov chain Monte Carlo (MCMC) method is used for tracking the object. Experimental results indicate that the proposed method can accurately detect moving objects.

Direct tracking of noncircular sources for multiple arrays via improved unscented particle filter method

  • Yang Qian;Xinlei Shi;Haowei Zeng;Mushtaq Ahmad
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.394-403
    • /
    • 2023
  • Direct tracking problem of moving noncircular sources for multiple arrays is investigated in this study. Here, we propose an improved unscented particle filter (I-UPF) direct tracking method, which combines system proportional symmetry unscented particle filter and Markov Chain Monte Carlo (MCMC) algorithm. Noncircular sources can extend the dimension of sources matrix, and the direct tracking accuracy is improved. This method uses multiple arrays to receive sources. Firstly, set up a direct tracking model through consecutive time and Doppler information. Subsequently, based on the improved unscented particle filter algorithm, the proposed tracking model is to improve the direct tracking accuracy and reduce computational complexity. Simulation results show that the proposed improved unscented particle filter algorithm for noncircular sources has enhanced tracking accuracy than Markov Chain Monte Carlo unscented particle filter algorithm, Markov Chain Monte Carlo extended Kalman particle filter, and two-step tracking method.

Numerical Iteration for Stationary Probabilities of Markov Chains

  • Na, Seongryong
    • Communications for Statistical Applications and Methods
    • /
    • 제21권6호
    • /
    • pp.513-520
    • /
    • 2014
  • We study numerical methods to obtain the stationary probabilities of continuous-time Markov chains whose embedded chains are periodic. The power method is applied to the balance equations of the periodic embedded Markov chains. The power method can have the convergence speed of exponential rate that is ambiguous in its application to original continuous-time Markov chains since the embedded chains are discrete-time processes. An illustrative example is presented to investigate the numerical iteration of this paper. A numerical study shows that a rapid and stable solution for stationary probabilities can be achieved regardless of periodicity and initial conditions.