KSCE Journal of Civil and Environmental Engineering Research
/
v.33
no.5
/
pp.1861-1870
/
2013
A climate change-driven increased hydrological variability has been widely acknowledged over the past decades. In this regards, rainfall simulation techniques are being applied in many countries to consider the increased variability. This study proposed a Homogeneous Hidden Markov Chain(HMM) designed to recognize rather complex patterns of rainfall with discrete hidden states and underlying distribution characteristics via mixture probability density function. The proposed approach was applied to Seoul and Jeonju station to verify model's performance. Statistical moments(e.g. mean, variance, skewness and kurtosis) derived by daily and seasonal rainfall were compared with observation. It was found that the proposed HMM showed better performance in terms of reproducing underlying distribution characteristics. Especially, the HMM was much better than the existing Markov Chain model in reproducing extremes. In this regard, the proposed HMM could be used to evaluate a long-term runoff and design flood as inputs.
This paper is done by studying two experimental cases which utilize the stochastic theory of Markov Chains, which is used for forecasting the future and by analyzing recent trend of studies. Since the study of Markov Chains is not applied to the Informetrics to a high degree in Korea. It is also proposed that there is a necessity for further study on Markov Chains and its activation.
Journal of the Korea Academia-Industrial cooperation Society
/
v.15
no.11
/
pp.6565-6575
/
2014
Hamilton's Markov-switching model [5] was extended to the simultaneous equations model. A framework for an instrumental variable interpretation of full information maximum likelihood (FIML) by Hausman [4] can be used to deal with the problem of simultaneous equations based on the Hamilton filter [5]. A comparison of the proposed FIML Markov-switching model with the LIML Markov-switching models [1,2,3] revealed the LIML Markov-switching models to be a special case of the proposed FIML Markov-switching model, where all but the first equation were just identified. Moreover, the proposed Markov-switching model is a general form in simultaneous equations and covers a broad class of models that could not be handled previously. Excess sensitivity of marginal propensity to consume with big shocks, such as housing bubble bursts in 2008, can be determined by applying the proposed model to Campbell and Mankiw's consumption function [6], and allowing for the possibility of structural breaks in the sensitivity of consumption growth to income growth.
A stationary Markov chain model is a stochastic process with the Markov property. Having the Markov property means that, given the present state, future states are independent of the past states. The Markov chain model has been widely used for water resources design as a main tool. A main assumption of the stationary Markov model is that statistical properties remain the same for all times. Hence, the stationary Markov chain model basically can not consider the changes of mean or variance. In this regard, a primary objective of this study is to develop a model which is able to make use of exogenous variables. The regression based link functions are employed to dynamically update model parameters given the exogenous variables, and the model parameters are estimated by canonical correlation analysis. The proposed model is applied to daily rainfall series at Seoul station having 46 years data from 1961 to 2006. The model shows a capability to reproduce daily and seasonal characteristics simultaneously. Therefore, the proposed model can be used as a short or mid-term prediction tool if elaborate GCM forecasts are used as a predictor. Also, the nonstationary Markov chain model can be applied to climate change studies if GCM based climate change scenarios are provided as inputs.
This paper derives the Markov model to calculate the reliability of the Digital Switching System being developed by KETRI. Using the failure states extracted from the system in the course of the modelling, we calculated the reliability of both the service grade and the function of the system. Especially, by including the repair rate into the model, we took optimum advantage of theMarkov process and solved the difficulties in the calculation by reducing the number of states of the system.
In this paper, we present the longitudinal Markov binary regression model with t-link function when its transition order is known or unknown. It is assumed that logit or probit models are considered in binary regression models. Here, t-link function can be used for more flexibility instead of the probit model since the t distribution approaches to normal distribution as the degree of freedom goes to infinity. A Markov regression model is considered because of the longitudinal data of each individual data set. We propose Bayesian method to determine the transition order of Markov regression model. In particular, we use the deviance information criterion (DIC) (Spiegelhalter et al., 2002) of possible models in order to determine the transition order of the Markov binary regression model if the transition order is known; however, we compute and compare their posterior probabilities if unknown. In order to overcome the complicated Bayesian computation, our proposed model is reconstructed by the ideas of Albert and Chib (1993), Kuo and Mallick (1998), and Erkanli et al. (2001). Our proposed method is applied to the simulated data and real data examined by Sommer et al. (1984). Markov chain Monte Carlo methods to determine the optimal model are used assuming that the transition order of the Markov regression model are known or unknown. Gelman and Rubin's method (1992) is also employed to check the convergence of the Metropolis Hastings algorithm.
In this study, a nonhomogeneous markov model which is able to simulate hourly rainfall series is developed for estimating reliable hydrologic variables. The proposed approach is applied to simulate hourly rainfall series in Korea. The simulated rainfall is used to estimate the design rainfall and flood in the watershed, and compared to observations in terms of reproducing underlying distributions of the data to assure model's validation. The model shows that the simulated rainfall series reproduce a similar statistical attribute with observations, and expecially maximum value is gradually increased as number of simulation increase. Therefore, with the proposed approach, the non-homogeneous markov model can be used to estimate variables for the purpose of design of hydraulic structures and analyze uncertainties associated with rainfall input in the hydrologic models.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.88-88
/
2011
수자원에서 일강수량 모의기법은 다양한 목적으로 활용되고 있으며 기본적으로 수공구조물 설계 및 수자원계획을 수립하기 위한 입력 자료로서 이용된다. 수자원계획은 장기적인 목적을 가지고 수행되는 것이 일반적이며 우리가 목표로 하는 장기간의 일강수량자료의 획득이 어렵기 때문에 단기간의 일강수량자료를 장기 모의하여 이용하게 된다. 일강수량을 모의하는데 있어서 강수계열의 단기간의 기억(memory)을 활용한 Markov Chain 모형이 가장 일반적이며, 기존 Markov Chain 모형을 통한 일강수량 모의에서 발생하는 가장 큰 문제점은 극치강수량을 재현하기 어렵다는 점이다. 이러한 문제점으로 인해 수자원 계획을 수립하는데 있어서 불확실성을 가중시키고 있다. 특히 일강수량 모의기법을 통해서 추정되는 빈도강수량의 과소추정으로 인해 수공구조물 설계 시에 신뢰성을 확보하는 데 문제점이 있다. 이러한 점에서 본 연구에서는 기존 Markov Chain 모형에서 일강수량에 평균적인 특성과 극치특성을 동시에 재현할 수 있도록 불연속 Kernel-Pareto Distribution 기반에 일강수량모의기법을 개발하였다. 한강유역의 3개 강수지점에 대해서 기존 Markov Chain 모형과 본 연구에서 제안한 방법을 적용한 결과 여름의 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 제안한 불연속 Kernel-Pareto 분포형 기반 Markov Chain 모형은 여름의 일강수량 모의 시 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하는 것으로 나타났다. 본 연구에서 제시한 방법론은 전체적으로 기존 Markov Chain 모형에 비해 극치강수량을 재현하는데 유리한 기법으로 판단되며, 또한 극치강수량을 일반강수량으로부터 분리하여 모의함으로서 평균 및 중간값 등 낮은 차수에 모멘트 등 일강수량에 전체적인 분포특성을 더욱 효과적으로 모의할 수 장점을 확인하였다.
The auto-and cross-correlation function, power spectrum, coherence function and Markov model are applied to investigate the statistical characteristics of discharge and each factor of water quality and the interrelation-ship between the variation of discharge and water quality factors. The analysis of discharge, dissolved oxygen and electric conductivity, which were only obtainable data at the Indogyo gagining station in the downstream of the Han River, clearly showed that they hace distinct period of 12 months and three different periods of 6, 4 and 3 months weaker than the former. The cross-correlation between the discharge and water quality(DO, COND) is rather weak and the crosscorrelation function has its peak at lag one. It is considered therefrom that the variation of discharge behaves on water quality facotrs with one day's difference. In the examination of linear regression model for the serial generation and predictive measures, discharge series is fit to first and second order Markov model and DO, COND to first order Markov model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.