• Title/Summary/Keyword: Markov모형

Search Result 286, Processing Time 0.024 seconds

Development of Daily Rainfall Simulation Model Based on Homogeneous Hidden Markov Chain (동질성 Hidden Markov Chain 모형을 이용한 일강수량 모의기법 개발)

  • Kwon, Hyun-Han;Kim, Tae Jeong;Hwang, Seok-Hwan;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1861-1870
    • /
    • 2013
  • A climate change-driven increased hydrological variability has been widely acknowledged over the past decades. In this regards, rainfall simulation techniques are being applied in many countries to consider the increased variability. This study proposed a Homogeneous Hidden Markov Chain(HMM) designed to recognize rather complex patterns of rainfall with discrete hidden states and underlying distribution characteristics via mixture probability density function. The proposed approach was applied to Seoul and Jeonju station to verify model's performance. Statistical moments(e.g. mean, variance, skewness and kurtosis) derived by daily and seasonal rainfall were compared with observation. It was found that the proposed HMM showed better performance in terms of reproducing underlying distribution characteristics. Especially, the HMM was much better than the existing Markov Chain model in reproducing extremes. In this regard, the proposed HMM could be used to evaluate a long-term runoff and design flood as inputs.

A Study on Markov Chains Applied to informetrics (마코프모형의 계량정보학적 응용연구)

  • Moon, Kyung-Hwa
    • Journal of Information Management
    • /
    • v.30 no.2
    • /
    • pp.31-52
    • /
    • 1999
  • This paper is done by studying two experimental cases which utilize the stochastic theory of Markov Chains, which is used for forecasting the future and by analyzing recent trend of studies. Since the study of Markov Chains is not applied to the Informetrics to a high degree in Korea. It is also proposed that there is a necessity for further study on Markov Chains and its activation.

  • PDF

Marginal Propensity to Consume with Economic Shocks - FIML Markov-Switching Model Analysis (경제충격 시기의 한계소비성향 분석 - FIML 마코프-스위칭 모형 이용)

  • Yoon, Jae-Ho;Lee, Joo-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6565-6575
    • /
    • 2014
  • Hamilton's Markov-switching model [5] was extended to the simultaneous equations model. A framework for an instrumental variable interpretation of full information maximum likelihood (FIML) by Hausman [4] can be used to deal with the problem of simultaneous equations based on the Hamilton filter [5]. A comparison of the proposed FIML Markov-switching model with the LIML Markov-switching models [1,2,3] revealed the LIML Markov-switching models to be a special case of the proposed FIML Markov-switching model, where all but the first equation were just identified. Moreover, the proposed Markov-switching model is a general form in simultaneous equations and covers a broad class of models that could not be handled previously. Excess sensitivity of marginal propensity to consume with big shocks, such as housing bubble bursts in 2008, can be determined by applying the proposed model to Campbell and Mankiw's consumption function [6], and allowing for the possibility of structural breaks in the sensitivity of consumption growth to income growth.

Development of Statistical Downscaling Model Using Nonstationary Markov Chain (비정상성 Markov Chain Model을 이용한 통계학적 Downscaling 기법 개발)

  • Kwon, Hyun-Han;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.213-225
    • /
    • 2009
  • A stationary Markov chain model is a stochastic process with the Markov property. Having the Markov property means that, given the present state, future states are independent of the past states. The Markov chain model has been widely used for water resources design as a main tool. A main assumption of the stationary Markov model is that statistical properties remain the same for all times. Hence, the stationary Markov chain model basically can not consider the changes of mean or variance. In this regard, a primary objective of this study is to develop a model which is able to make use of exogenous variables. The regression based link functions are employed to dynamically update model parameters given the exogenous variables, and the model parameters are estimated by canonical correlation analysis. The proposed model is applied to daily rainfall series at Seoul station having 46 years data from 1961 to 2006. The model shows a capability to reproduce daily and seasonal characteristics simultaneously. Therefore, the proposed model can be used as a short or mid-term prediction tool if elaborate GCM forecasts are used as a predictor. Also, the nonstationary Markov chain model can be applied to climate change studies if GCM based climate change scenarios are provided as inputs.

Markov 과정을 이용한 디지탈 교환기의 신뢰도 모형

  • Sin, Seong-Mun;Choe, Tae-Gu;Lee, Dae-Gi
    • ETRI Journal
    • /
    • v.5 no.2
    • /
    • pp.3-8
    • /
    • 1983
  • This paper derives the Markov model to calculate the reliability of the Digital Switching System being developed by KETRI. Using the failure states extracted from the system in the course of the modelling, we calculated the reliability of both the service grade and the function of the system. Especially, by including the repair rate into the model, we took optimum advantage of theMarkov process and solved the difficulties in the calculation by reducing the number of states of the system.

  • PDF

Bayesian inference of longitudinal Markov binary regression models with t-link function (t-링크를 갖는 마코프 이항 회귀 모형을 이용한 인도네시아 어린이 종단 자료에 대한 베이지안 분석)

  • Sim, Bohyun;Chung, Younshik
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.47-59
    • /
    • 2020
  • In this paper, we present the longitudinal Markov binary regression model with t-link function when its transition order is known or unknown. It is assumed that logit or probit models are considered in binary regression models. Here, t-link function can be used for more flexibility instead of the probit model since the t distribution approaches to normal distribution as the degree of freedom goes to infinity. A Markov regression model is considered because of the longitudinal data of each individual data set. We propose Bayesian method to determine the transition order of Markov regression model. In particular, we use the deviance information criterion (DIC) (Spiegelhalter et al., 2002) of possible models in order to determine the transition order of the Markov binary regression model if the transition order is known; however, we compute and compare their posterior probabilities if unknown. In order to overcome the complicated Bayesian computation, our proposed model is reconstructed by the ideas of Albert and Chib (1993), Kuo and Mallick (1998), and Erkanli et al. (2001). Our proposed method is applied to the simulated data and real data examined by Sommer et al. (1984). Markov chain Monte Carlo methods to determine the optimal model are used assuming that the transition order of the Markov regression model are known or unknown. Gelman and Rubin's method (1992) is also employed to check the convergence of the Metropolis Hastings algorithm.

Derivation of Intensity-Duration-Frequency and Flood Frequency Curve by Simulation of Hourly Precipitation using Nonhomogeneous Markov Chain Model (비동질성 Markov 모형의 시간강수량 모의 발생을 이용한 IDF 곡선 및 홍수빈도곡선의 유도)

  • Choi, Byung-Kyu;Oh, Tae-Suk;Park, Rae-Gun;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.251-264
    • /
    • 2008
  • In this study, a nonhomogeneous markov model which is able to simulate hourly rainfall series is developed for estimating reliable hydrologic variables. The proposed approach is applied to simulate hourly rainfall series in Korea. The simulated rainfall is used to estimate the design rainfall and flood in the watershed, and compared to observations in terms of reproducing underlying distributions of the data to assure model's validation. The model shows that the simulated rainfall series reproduce a similar statistical attribute with observations, and expecially maximum value is gradually increased as number of simulation increase. Therefore, with the proposed approach, the non-homogeneous markov model can be used to estimate variables for the purpose of design of hydraulic structures and analyze uncertainties associated with rainfall input in the hydrologic models.

A Development of Rainfall Simulation Model Using Piecewise Generalize Pareto Distribution (불연속 Pareto 분포를 활용한 강수 모의발생 모델 개발)

  • Kwon, Hyun-Han;So, Byung-Jin;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.88-88
    • /
    • 2011
  • 수자원에서 일강수량 모의기법은 다양한 목적으로 활용되고 있으며 기본적으로 수공구조물 설계 및 수자원계획을 수립하기 위한 입력 자료로서 이용된다. 수자원계획은 장기적인 목적을 가지고 수행되는 것이 일반적이며 우리가 목표로 하는 장기간의 일강수량자료의 획득이 어렵기 때문에 단기간의 일강수량자료를 장기 모의하여 이용하게 된다. 일강수량을 모의하는데 있어서 강수계열의 단기간의 기억(memory)을 활용한 Markov Chain 모형이 가장 일반적이며, 기존 Markov Chain 모형을 통한 일강수량 모의에서 발생하는 가장 큰 문제점은 극치강수량을 재현하기 어렵다는 점이다. 이러한 문제점으로 인해 수자원 계획을 수립하는데 있어서 불확실성을 가중시키고 있다. 특히 일강수량 모의기법을 통해서 추정되는 빈도강수량의 과소추정으로 인해 수공구조물 설계 시에 신뢰성을 확보하는 데 문제점이 있다. 이러한 점에서 본 연구에서는 기존 Markov Chain 모형에서 일강수량에 평균적인 특성과 극치특성을 동시에 재현할 수 있도록 불연속 Kernel-Pareto Distribution 기반에 일강수량모의기법을 개발하였다. 한강유역의 3개 강수지점에 대해서 기존 Markov Chain 모형과 본 연구에서 제안한 방법을 적용한 결과 여름의 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 제안한 불연속 Kernel-Pareto 분포형 기반 Markov Chain 모형은 여름의 일강수량 모의 시 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하는 것으로 나타났다. 본 연구에서 제시한 방법론은 전체적으로 기존 Markov Chain 모형에 비해 극치강수량을 재현하는데 유리한 기법으로 판단되며, 또한 극치강수량을 일반강수량으로부터 분리하여 모의함으로서 평균 및 중간값 등 낮은 차수에 모멘트 등 일강수량에 전체적인 분포특성을 더욱 효과적으로 모의할 수 장점을 확인하였다.

  • PDF

Statistical Characteristics of Pollutants in Sterm Flow (하천오염인자의 통계적 특성)

  • 황임구;윤태훈
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.19-26
    • /
    • 1981
  • The auto-and cross-correlation function, power spectrum, coherence function and Markov model are applied to investigate the statistical characteristics of discharge and each factor of water quality and the interrelation-ship between the variation of discharge and water quality factors. The analysis of discharge, dissolved oxygen and electric conductivity, which were only obtainable data at the Indogyo gagining station in the downstream of the Han River, clearly showed that they hace distinct period of 12 months and three different periods of 6, 4 and 3 months weaker than the former. The cross-correlation between the discharge and water quality(DO, COND) is rather weak and the crosscorrelation function has its peak at lag one. It is considered therefrom that the variation of discharge behaves on water quality facotrs with one day's difference. In the examination of linear regression model for the serial generation and predictive measures, discharge series is fit to first and second order Markov model and DO, COND to first order Markov model.

  • PDF