This study was carried out to forecast long-term supply and demand of chestnut and to analyze the impacts of change in the environment of domestic and international chestnut markets. For these ends, the study developed a partial equilibrium market model, in which in-shelled chestnut market was vertically linked to shelled chestnut market. To examine the predictive ability of the model for the endogenous variables ex-post simulation was run for the period 1990 through 2003. In general, all endogenous variables reproduced the historical trends during the period except for disuse areas and newly established areas. The results of forecasting supply and demand show that domestic in-shelled chestnut production is estimated to decrease slightly from 76,447 ton in 2005 to 76,286 ton in 2020 and that exports of shelled chestnut continue to be decreased.
The Transactions of The Korean Institute of Electrical Engineers
/
v.65
no.9
/
pp.1486-1492
/
2016
This study presents the electrical load forecasting and error correction method using a real building load pattern, and the way to manage the energy storage system with forecasting results for economical load operation. To make a unique pattern of target load, we performed the Hierarchical clustering that is one of the data mining techniques, defined load pattern(group) and forecasted the demand load according to the clustering result of electrical load through the previous study. In this paper, we propose the new reference demand for improving a predictive accuracy of load demand forecasting. In addition we study an error correction method for response of load events in demand load forecasting, and verify the effects of proposed correction method through EMS scheduling simulation with load forecasting correction.
Korean Journal of Construction Engineering and Management
/
v.7
no.2
s.30
/
pp.162-170
/
2006
Neural network analysis is expected to enhance the forecasting ability for the real estate market. This paper reviews definition, structure, strengths and weaknesses of neural network analysis, and verifies the applicability of neural network analysis for the real estate market. Neural network analysis is compared with regression analysis using the same sample data. The analyses model the macroeconomic parameters that influence the sales price of apartments. The results show that neural network analysis provides better forecasting accuracy than regression analysis does, what confirms the applicability of neural network analysis for the real estate market.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.17
no.6
/
pp.54-59
/
2003
This paper presents hourly system marginal price forecasting of the Korea electric power system using a fuzzy linear regression analysis method. The proposed method is tested by forecasting hourly system marginal price for a week of spring in 2002. The percent average of forecasting error for the proposed method is from 3.14% to 6.10% in the weekdays, from 7.04% to 8.22% in the weekends, and comparable with a artificial neural networks method.
He, Ting;Meng, Ke;Dong, Zhao-Yang;Oh, Yong-Taek;Xu, Yan
Journal of Electrical Engineering and Technology
/
v.5
no.3
/
pp.363-370
/
2010
Load forecasting has always been essential to the operation and planning of power systems in deregulated electricity markets. Various methods have been proposed for load forecasting, and the neural network is one of the most widely accepted and used techniques. However, to obtain more accurate results, more information is needed as input variables, resulting in huge computational costs in the learning process. In this paper, to reduce training time in multi-layer perceptron-based short-term load forecasting, a graphics processing unit (GPU)-based computing method is introduced. The proposed approach is tested using the Korea electricity market historical demand data set. Results show that GPU-based computing greatly reduces computational costs.
KIEE International Transactions on Power Engineering
/
v.4A
no.3
/
pp.159-166
/
2004
Forecasting prices in electricity markets is critical for consumers and producers in planning their operations and managing their price risk. We utilize the generalized autoregressive conditionally heteroskedastic (GARCH) method to forecast the electricity prices in two regions of New York: New York City and Central New York State. We contrast the one-day forecasts of the GARCH against techniques such as dynamic regression, transfer function models, and exponential smoothing. We also examine the effect on our forecasting of omitting some of the extreme values in the electricity prices. We show that accounting for the extreme values and the heteroskedactic variance in the electricity price time-series can significantly improve the accuracy of the forecasting. Additionally, we document the higher volatility in New York City electricity prices. Differences in volatility between regions are important in the pricing of electricity options and for analyzing market performance.
The Journal of Asian Finance, Economics and Business
/
v.9
no.3
/
pp.181-193
/
2022
This paper seeks to investigate major macroeconomic factors and bond yield interactions in Thai bond markets, with the goal of forecasting future bond yields. This study examines the best predictive yields for future bond yields at different maturities of 1-, 3-, 5-, 7-, and 10-years using time series data of economic indicators covering the period from 1998 to 2020. The empirical findings support the hypothesis that macroeconomic factors influence bond yield fluctuations. In terms of forecasting future bond yields, static predictions reveal that in most cases, the BVAR model offers the best predictivity of bond rates at various maturities. Furthermore, the BVAR model has the best performance in dynamic rolling-window, forecasting bond yields with various maturities for 2-, 4-, and 8-quarters. The findings of this study imply that the BVAR model forecasts future yields more accurately and consistently than other competitive models. Our research could help policymakers and investors predict bond yield changes, which could be important in macroeconomic policy development.
At the beginning of the COVID-19 pandemic, Korea's wine market had shrunk as other countries. However, right after the pandemic, Korea's imported wine consumption had been increased 69.6%. Because of the ban on overseas travel, wine was consumed in the domestic market. And consumption of high-end wines were increased significantly due to revenge spending and home drinking. However, from 2022 Korea's wine market has begun to shrink sharply again. Therefore this study forecasts the size of imported wine market by 2032 to provide useful information to wine related business entities. KITA(Korea International Trade Association)'s 95 time-series data per quarter from Q1 of 2001 to Q3 of 2023 was utilized in this research. The accuracy of model was tested based on value of MAPE. And ARIMA model was chosen to forecast the size of market value and Winter's multiplicative model was used for the size of market volume. The result of ARIMA model for the value (MAPE=10.56%) shows that the size of market value in 2032 will be increased up to USD $1,023,619, CAGR=6.22% which is 101% bigger than its size of 2023. On the other hand, the volume of imported wine market (MAPE=10.56%) will be increased up to 64,691,329 tons, CAGR=-0.61% which is only 15.12% bigger than its size of 2023. The result implies that the value of Korea's wine market will continue to grow despite the recent decline. And the high-end wine market will account for most of the increase.
Proceedings of the Korean Operations and Management Science Society Conference
/
2000.10a
/
pp.77-80
/
2000
Feedback herding strategy in stock market means considering other investor's strategy as a basis of market forecasting of next term. Generally, individual investors use that strategy which mimics the strategy of institutional investors. When it is used in stock market, both kind of investors, preceders and followers, can take the higher average of rate of return to normal market in which no feedback herding strategy is not use, the more investors take part in. And variance of return, the risk of investment, are same to both group.
The public SW market is 3 trillion won, which is less than 10% of the total SW market. However, due to the nature of the domestic market, it is an important market with a relatively large impact on small and medium-sized software companies. In this market, government is operating the Public SW Project Demand Forecasting System in order to support the marketing activities of small and medium sized SW companies and establish a fair market order. The current system has limitations such as lack of user convenience, insufficient analysis capability and less business connection. This study was conducted to identify the problems of these systems and to propose a new system for improving the convenience of users and expanding the information utilization of SMEs. To this end, we analyzed the requirements of each stakeholder. We proposed the 2-phased forecasting cycle, the management cycle, and the system life cycle of public SW projects and created a unified identifier (UID) so that the information of those projects can be identified and linked among them. As a result, an integrated reference model of project information management based on system life cycle was developed, which can explain the demand forecasting and project information, and the improved processes was also designed to implement them. Through the result of this study, it is expected that integrated management of public SW projects will be possible.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.