References
- P.R.J. Campbell, K. Adamson, “Methodologies for load forecasting,” Int. IEEE Conf. Intell. Syst., pp. 800-806, Sept. 2006.
- L. Xu, Z.Y. Dong, and A. Tay, “Time series forecast with Elman neural networks and genetic algorithms,” in K.C. Tan, M.H. Lim, X. Yao, and L.P. Wang (ed): Recent Advances in Simulated Evolution and Learning, World Scientific series, Vol. 2, Advances in Natural Computation, 2004.
- Z. Xu, Z.Y. Dong, and W. Liu, “Neural network models for electricity market forecasting,” in D. Wang and N.K. Lee (ed): Neural Networks Applications in Information Technology and Web Engineering, Borneo Publications, 2005.
- Z.Y. Dong, “A neural network based framework forelectricity load and price forecasting,” Int. Conf.Comput. Intell., Robot. and Auton. Syst., Singapore,pp. 88-93, Nov. 2001.
- B.L. Zhang, Z.Y. Dong, “An adaptive neural-waveletmodel for short term load forecasting,” Int. J. Electr.Power Syst. Res., Vol. 59, No. 2, pp. 121-129, Sep.2001. https://doi.org/10.1016/S0378-7796(01)00138-9
- H.A. Salama, A.F.A. El-Gawad, H.M. Mahmoud,E.A. Mohamed, S.M. Saker, “Short-term load forecastinginvestigations of Egyptian electrical networkusing ANNs,” Int. Uni. Power Eng. Conf., Vol. 4-6,pp. 550-555, Sep. 2007.
- G.C. Liao, “A novel particle swarm optimization approachcombined with fuzzy neural networks forshort-term load forecasting,” IEEE Power EngineeringSociety General Meeting, Jun. 2007.
- Y. Xu, Z.Y. Dong, K. Meng, J.H. Zhao, and H.M.Yang “A short-term load forecasting model for AustralianNEM,” Chin. Univ. Conf. Power Syst. Automat.,Changsha, Oct. 2009.
- K. Liu, S. Subbarayan, R.R. Shoults, M.T. Manry, C.Kwan, F.I. Lewis, J. Naccarino, “Comparison of veryshort-term load forecasting techniques,” IEEE Trans.Power Syst., Vol. 11, No. 2, pp. 877-882, May 1996. https://doi.org/10.1109/59.496169
- K. Meng, Z.Y. Dong, and K.P. Wong, “Self-adaptiveRBF neural network for short-term electricity priceforecasting,” IET Gen Trans & Dist., Vol. 3, No. 4, pp325-335,Apr. 2009. https://doi.org/10.1049/iet-gtd.2008.0328
- K. Meng, Z.Y. Dong, H.G. Wang, and Y.Y. Wang,“Comparisons of machine leaning methods for electricityreference price forecasting,” ISNN 2009: Int.Symp. Neural Netw., Wuhan, pp. 827-835, May 2009.
- X. Yin, Z.Y. Dong, and P. Zhang, “Fundamentals of emerging techniques,” in Z.Y. Dong, P. Zhang, et al. (edit): Emerging Techniques in Power System Analysis, Springer, pp. 23-44, Jan. 2010.
- T. Senjyu, H. Takara, K. Uezato, T. Funabashi, “Onehour-ahead load forecasting using neural networks,”IEEE Trans. Power Syst., Vol. 17, No. 1, pp. 113-118,Feb. 2002. https://doi.org/10.1109/59.982201
- C. Lursinsap, J.H. Kim, “Parallel learning for backpropagationnetwork in binary field,” IEEE Int. Symp.Circuits Syst., Vol. 3, pp. 1477-1480, Jun. 1991.
- H. Schabauer, E. Schikuta, T. Weishaupl, “Solvingvery large traveling salesman problems by SOM parallelizationon cluster architectures,” Int. Conf. Paralleland Distri. Comput., Appl. and Technol., pp. 954-958, Dec. 2005.
- I. Buck, “GPU computing: programming a massivelyparallel processor,” Int. Symp. Code Gen. and Optimiz.,pp. 17, Mar. 2007.
- K. Levenberg, “A method for the solution of certainnon-linear problems in least squares,” Q. J. Appl.Math., Vol. II, No. 2, pp. 164-168, 1944.
- NVIDIA CUDA Compute Unified Device Architecture, Programming Guide Version 2.1 Beta, Dec. 2008.
- J. Bolz, I. Farmer, E. Grinspun, and P. Schroder,“Sparse matrix solvers on the GPU: conjugate gradientsand multigrid,” ACM Trans. Graph., Vol. 22, No.3, pp. 917-924, Aug. 2003. https://doi.org/10.1145/882262.882364
- I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,M. Houston, and P. Hanrahan, “Brook forGPUs: stream computing on graphics hardware,”ACM Trans. Graph., Vol. 23, No. 3, pp. 777-786, Aug.2004. https://doi.org/10.1145/1015706.1015800
- H.S. Hippert, C.E. Pedreira, R.C. Souza, “Neuralnetworks for short-term load forecasting: a reviewand evaluation,” IEEE Trans. Power Syst., Vol. 16,No. 1, pp. 44-55, Feb. 2001. https://doi.org/10.1109/59.910780
Cited by
- Optimal Allocation of Energy Storage System for Risk Mitigation of DISCOs With High Renewable Penetrations vol.29, pp.1, 2014, https://doi.org/10.1109/TPWRS.2013.2278850