• 제목/요약/키워드: Marker selection

Search Result 511, Processing Time 0.031 seconds

Identification of single nucleotide polymorphisms in the ACADS gene and their relationships with economic traits in Hanwoo (한우의 ACADS 유전자내의 SNP 탐색 및 경제형질과의 연관성 분석)

  • Oh, Jae-Don;Cheong, Il-Cheong;Sohn, Young-Gon;Kong, Hong-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.2
    • /
    • pp.219-226
    • /
    • 2012
  • The acyl-CoA dehydrogenase, C-2 to C-3 short chain (ACADS) gene is known to be related with fat metabolism, especially coverts the fat to the energy sources in cattle. In human, the mutations in this gene cause SCAD deficiency, which is one of the fatty acid metabolism disorders. The ACADS gene is located on bovine chromosome 17. The objective of this study was to identify SNPs in Hanwoo ACADS gene and identify the relationships with economic traits. In this study, two SNPs, T1570G SNP in exon 2 and G13917A SNP in exon 4, were observed. Moreover, in the coding region, 2 missense mutations, T (Cys) ${\rightarrow}$ G (Trp) mutation at 1570 bp and G (Arg) ${\rightarrow}$ A (Gln) mutation at 13917 bp, were observed. These mutations were subjected to the PCR-RFLP for typing 198 Hanwoo animals. The observed genotype frequency for T1570G was 0.135 (TT), 0.860 (TG) and 0.005 (GG), respectively. Also, 0.900 (GG) and 0.100 (GA) were observed for the G13917A mutation. The association of these SNPs with four economic traits, CW (Carcass Weight), BF (Backfat Thickness), LMA (Longissimus Muscle Area), MS (Marbling Score), were also observed. The results indicated that no significant results were observed in all four traits (P>0.05). This might indicate that further studies are ultimately needed to use the SNPs in ACADS gene in lager populations for effectively used for the marker assisted selection.

Selection of PCR Markers and Its Application for Distinguishing Dried Root of Three Species of Angelica

  • Jin, Dong-Chun;Sung, Jung-Sook;Bang, Kyong-Hwan;In, Dong-Su;Kim, Dong-Hwi;Park, Hee-Woon;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2005
  • An analysis of RAPD-PCR (random amplified polymorphic DNA-polymerase chain reaction) was performed with three Angelica species (A. gigas Nakai, A. sinensis (Olive.) Diels and A. acutiloba Kitag) in an effort to distinguish between members of these three species. Two arbitrary primers (OPC02, OPD11) out of80 primers tested, produced 17 species-specific fragments among the three species. Eight fragments were specific for A. sinensis, four fragments specific for A. gigas, five specific for A. acutiloba. When primers OPC02 and OPD11 were used in the polymerase chain reaction, RAPD-PCR fragments that were specific for each of the three species were generated simultaneously. Primer OPC02 produced eight species-specific fragments: four were specific for A. sinensis, one for A. gigas, and three for A. acutiloba. Primer OPD11 produced nine speciesspecific fragments: four for A. sinensis, three for A. gigas, and two for A. acutiloba. The RAPD-PCR markers that were generated with these two primers should rapidly identify members of the three Angelica species. The consistency of the identifications made with these species-specific RAPD-PCR markers was demonstrated by the observation that each respective marker was generated from three accessions of each species, all with different origins. We also performed the RAPD-PCR analysis with the dried Angelica root samples that randomly collected from marketed and from the OPC02 primer, obtained a A. gigasspecific band and the band were cloned and sequenced.

Development of Fusant Degrading Aniline and 4-chlorobiphenyl by Spheroplast Fusion between Pseudomonas sp. and Flavimonas oryzihabitans (Flavimonas oryzihabitans와 Pseudomonas sp.간 원형질체 융합에 의한 Aniline과 4-chlorobiphenyl 분해균주 개발)

  • 박형수;박용근;김무훈;고범준;조미영;김치경
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.259-266
    • /
    • 2000
  • Spheroplast cell fusions were performed with Flavimonas oryzihabitans degrading aniline and Pseudomonas sp. degrading 4-chlorobiphenyl to develope the new fusant degrading aniline and 4-CBP and its characters were investigated. F. oryzihabitans was induced to antibiotic marker ($Cm^r$ by NTG treatment for the fusants selection. The results of spheroplast formation and regeneration frequencies of the strains treated with lysozyme-EDTA were 99% and 5.0~6.6%, respectively. Fusion products were treated with 40% (v/v) PEG 6000 and fusion frequency was $3.16{\times}10^{-4} $. The DNA content of fusant, F22 was approximately 2-fold compared with parents. The fusant was stable, and showed the mixed biochemical characteristics of the parent strains. F22 was similar to parent for cell growth pattern and degrading capacity on 5 mM aniline but cell growth rate of F22 was 1.5-fold higher than that of the parent on 10mM aniline. However 4-CBP degrading ability of F22 was slightly lower than that of parental strain.

  • PDF

A Novel Integrative Expression Vector for Sulfolobus Species

  • Choi, Kyoung-Hwa;Hwang, Sungmin;Yoon, Naeun;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1503-1509
    • /
    • 2014
  • With the purpose of facilitating the process of stable strain generation, a shuttle vector for integration of genes via a double recombination event into two ectopic sites on the Sulfolobus acidocaldarius chromosome was constructed. The novel chromosomal integration and expression vector pINEX contains a pyrE gene from S. solfataricus P2 ($pyrE_{sso}$) as an auxotrophic selection marker, a multiple cloning site with histidine tag, the internal sequences of malE and malG for homologous recombination, and the entire region of pGEM-T vector, except for the multiple cloning region, for propagation in E. coli. For stable expression of the target gene, an ${\alpha}$-glucosidase-producing strain of S. acidocaldarius was generated employing this vector. The malA gene (saci_1160) encoding an ${\alpha}$-glucosidase from S. acidocaldarius fused with the glutamate dehydrogenase ($gdhA_{saci}$) promoter and leader sequence was ligated to pINEX to generate pINEX_malA. Using the "pop-in" and "pop-out" method, the malA gene was inserted into the genome of MR31 and correct insertion was verified by colony PCR and sequencing. This strain was grown in YT medium without uracil and purified by His-tag affinity chromatography. The ${\alpha}$-glucosidase activity was confirmed by the hydrolysis of $pNP{\alpha}G$. The pINEX vector should be applicable in delineating gene functions in this organism.

Screening of Domestic Silkworm Strains for Efficient Heterologous Protein Expression by Bombyx mori Nuclear Polyhedrosis Virus (BmNPV)

  • Jo, Sun Jung;Choi, Ji-Hyun;Kang, Ju-Il;Lim, Jae-Hwan;Seok, Young Sik;Lee, Jae Man;Kusakabe, Takahiro;Hong, Sun Mee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.2
    • /
    • pp.185-192
    • /
    • 2014
  • Recombinant proteins can be generated quickly and easily in large amounts and at low-cost in silkworm larvae by using Bombyx mori nuclear polyhedrosis virus (BmNPV). We searched for high-permissive silkworm strains that have high production levels of heterologous proteins and are thus suitable for use as biofactories. In this study, we performed the analysis using a BmNPV vector expressing luciferase as a marker, and we confirmed protein expression by evaluating luciferase activity, determined by western blotting and luciferase ELISA, and confirmed transcription expression by semi- and quantitative real time PCR. For the selection of host silkworm strains, we first chose 52 domestic BmNPV sensitive strains and then identified 10 high-permissive and 5 low-permissive strains. In addition, to determine which hybrid of the high-permissive strains would show heterosis, nine strains derived through three-way crossing were tested for luciferase activity by western blotting, and luciferase ELISA. We found a correlation between luciferase activity and luciferase protein expression, but not transcription. There was no noticeable difference in protein expression levels between Jam313 as the high-permissive control strain and the three-way hybrid strains; however, the three-way cross strains showed lower luciferase activity compared with Jam313. In this study, luciferase protein production in the larvae of 52 domestic silkworm strains was elucidated using BmNPV.

Development of a single-nucleotide-polymorphism marker for specific authentication of Korean ginseng (Panax ginseng Meyer) new cultivar "G-1"

  • Yang, Dong-Uk;Kim, Min-Kyeoung;Mohanan, Padmanaban;Mathiyalagan, Ramya;Seo, Kwang-Hoon;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • Background: Korean ginseng (Panax ginseng) is a well-known medicinal plant of Oriental medicine that is still in practice today. Until now, a total of 11 Korean ginseng cultivars with unique features to Korean ginseng have been developed based on the pure-line-selection method. Among them, a new cultivar namely G-1 with different agricultural traits related to yield and content of ginsenosides, was developed in 2012. Methods: The aim of this study was to distinguish the new ginseng cultivar G-1 by identifying the unique single-nucleotide polymorphism (SNP) at its 45S ribosomal DNA and Panax quinquefolius region than other Korean ginseng cultivars using multiplex amplification-refractory mutation system-polymerase chain reaction (ARMS-PCR). Results: A SNP at position of 45S ribosomal DNA region between G-1, P. quinquefolius, and the other Korean ginseng cultivars was identified. By designing modified allele-specific primers based on this site, we could specifically identified G-1 and P. quinquefolius via multiplex PCR. The unique primer for the SNP yielded an amplicon of size 449 bp in G-1 cultivar and P. quinquefolius. This study presents an effective method for the genetic identification of the G-1 cultivar and P. quinquefolius. Conclusion: The results from our study shows that this SNP-based approach to identify the G-1 cultivar will be a good way to distinguish accurately the G-1 cultivar and P. quinquefolius from other Korean ginseng cultivars using a SNP at 45S ribosomal DNA region.

QTL Analysis of Soybean Seed Weight Using RAPD and SSR Markers

  • Chung, Jong-Il;Ko, Mi-Suk;Kang, Jin-Ho
    • Plant Resources
    • /
    • v.3 no.3
    • /
    • pp.184-193
    • /
    • 2000
  • Soybean [Glycine max (L.) Merr.] seed weight is a important trait in cultivar development. Objective of this study was to identify and confirm quantitative trait loci (QTLs) for seed weight variation in the F2 and F2:3 generations. QTLs for seed weight were identified in F2 and F2:3 generations using interval mapping (MapMaker/QTL) and single-factor analysis of variance (ANOVA). In the F2 plant generation (i.e., F3 seed), three markers, OPL9a, OPM7a, and OPAC12 were significantly (P<0.01) associated with seed weight QTLs. In the F2:3 plant row generation (i.e., F4 seed), five markers, OPA9a, OPG19, OPL9b, OPP11, and Sat_085 were significantly (P<0.01) associated with seed weight QTLs. Two markers, OPL9a and OPL9b were significantly (P<0.05) associated with seed weight QTLs in both generations. Two QTLs on USDA soybean linkage group C1 and R were identified in both F2 and F2:3 generations using interval mapping. The linkage group C1 QTL explained 16% of the variation in seed weight in both generations, and the linkage group R QTL explained 39% and 41% of the variation for F2 and F2:3 generation, respectively. The linkage group C2 QTL identified in F2:3 generation explained 14.9% of variation. Linkage groups C1, C2 and R had previously been identified as harbouring seed size QTLs. The consistency of QTLs across generations and populations indicates that marker-assisted selection is possible in a soybean breeding program.

  • PDF

Resistance Potential of Bread Wheat Genotypes Against Yellow Rust Disease Under Egyptian Climate

  • Mahmoud, Amer F.;Hassan, Mohamed I.;Amein, Karam A.
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.402-413
    • /
    • 2015
  • Yellow rust (stripe rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive foliar diseases of wheat in Egypt and worldwide. In order to identify wheat genotypes resistant to yellow rust and develop molecular markers associated with the resistance, fifty F8 recombinant inbred lines (RILs) derived from a cross between resistant and susceptible bread wheat landraces were obtained. Artificial infection of Puccinia striiformis was performed under greenhouse conditions during two growing seasons and relative resistance index (RRI) was calculated. Two Egyptian bread wheat cultivars i.e. Giza-168 (resistant) and Sakha-69 (susceptible) were also evaluated. RRI values of two-year trial showed that 10 RILs responded with RRI value >6 <9 with an average of 7.29, which exceeded the Egyptian bread wheat cultivar Giza-168 (5.58). Thirty three RILs were included among the acceptable range having RRI value >2 <6. However, only 7 RILs showed RRI value <2. Five RILs expressed hypersensitive type of resistance (R) against the pathogen and showed the lowest Average Coefficient of Infection (ACI). Bulked segregant analysis (BSA) with eight simple sequence repeat (SSR), eight sequence-related amplified polymorphism (SRAP) and sixteen random amplified polymorphic DNA (RAPD) markers revealed that three SSR, three SRAP and six RAPD markers were found to be associated with the resistance to yellow rust. However, further molecular analyses would be performed to confirm markers associated with the resistance and suitable for marker-assisted selection. Resistant RILs identified in the study could be efficiently used to improve the resistance to yellow rust in wheat.

Genetic Transformation and Plant Regeneration of Codonopsis lanceolata Using Agrobacterium (Agrobacterium에 의한 더덕의 형질전환과 식물체 재분화)

  • 최필선;김윤성;유장렬;소웅영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.315-318
    • /
    • 1994
  • To obtain transformed plants, we cocultured cotyledonary explants of Codonopsis lanceolata with Agrobacterium tumefaciens LBA4404, a disamed strain harboring a binary vector pBI121 carrying the CaMV35S promoter-$\beta$-glucuronidase (GUS) gene fusion used as a reporter gene and NOS promoter-neomycin phosphotransferase gene as a positive selection marker in MS liquid medium with 1mg/L BA. After 48 h of culture, explants were transferred onto MS solid medium with Img/L BA, 250mg/L carbenicillin, and 100mg/L kanamycin sulfate and cultured in the dark. Numerous adventitious buds formed on the cut edges of the explants after 2 weeks of culture. When subjected to GUS histochemical assay buds showed a positive response at a frequency of 15%. Explants formed adventitious shoot at a frequency of 56.7%, after 6 weeks of culture. Upon transfer onto the basal medium, most of the shoots were rooted and subsequently the regenerants were transplanted to potting soil. Southern blot analysis confirmed that the GUS gene was incorporated into the genomic DNA of the GUS-positive regenerants.

  • PDF

The use of cotyledonary-node explants in Agrobacterium tumefaciensmediated transformation of cucumber (Cucumis sativus L.) (Agrobacterium에 의한 오이 형질전환에서 자엽절 절편의 이용)

  • Jang, Hyun-A;Kim, Hyun-A;Kwon, Suk-Yoon;Choi, Dong-Woog;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.198-202
    • /
    • 2011
  • Agrobacterium tumefaciens-mediated cotyledonary-node explants transformation was used to produce transgenic cucumber. Cotyledonary-node explants of cucumber (Cucumis sativus L. cv., Eunsung) were co-cultivated with Agrobacterium strains (EHA101) containing the binary vector (pPZP211) carrying with CaMV 35S promoter-nptII gene as selectable marker gene and 35S promoter-DQ gene (unpublished data) as target gene. The average of transformation efficiency (4.01%) was obtained from three times experiments and the maximum efficiency was shown at 5.97%. A total of 9 putative transgenic plants resistant to paromomycin were produced from the cultures of cotyledonary-node explants on selection medium. Among them, 6 transgenic plants showed that the nptII gene integrated into each genome of cucumber by Southern blot analysis.