• Title/Summary/Keyword: Marker nucleotide

Search Result 330, Processing Time 0.033 seconds

Identification of Genetic Markers for Korean Native Cattle (Hanwoo) by RAPD Analysis

  • Yeo Jung Sou;Lee Ji Sun;Lee Chang Hee;Jung Young Ja;Nam Doo Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.23-26
    • /
    • 2000
  • In order to develop the specific genetic marker for Korean native cattle (Hanwoo), randomly amplified polymorphic DNA (RAPD) analysis of 6 different cattle breeds was attempted by using 38 decamer primers. In comparison of RAPD patterns, two distinctive DNA bands specific for Hanwoo were detected. One was 296 bp of DNA fragment found to be specific only for female Hanwoo when primer GTCCACACGG was employed. In individual analysis of this RAPD marker was observed only in female individuals with the possibility of $85.3\%$. The other was 521 bp of RAPD marker amplified using TCGGCGATAG and AGCCAGCGAA primers, which showed $83.0\%$ of genetic frequency in 85 male and 68 female individuals tested. Nucleotide sequencing of these genetic markers revealed that 296 bp marker has a short micro satellite-like sequence, ACCACCACAC, and a tandem repeat sequence of microsatellite GAAAAATG in the determined sequence. Two distinctive tandem repeats of microsatellite sequences, MC and GAAGA, were also appeared in 521 bp DNA marker. In BLAST search, any gene having high homology with these markers was not found.

  • PDF

Effect of RFLP Marker of the Mitochondrial DNA D-Loop Region on Milk Production in Korean Cattle (한우 Mitochondrial DNA D-Loop 영역의 RFLP Marker가 산유량에 미치는 영향)

  • Chung Eui-Ryong;Chung Ku-Young
    • Food Science of Animal Resources
    • /
    • v.25 no.2
    • /
    • pp.218-225
    • /
    • 2005
  • This study was performed to determine sequence variation and RFLP of the mt DNA D-loop region using Southern blot hybridization analysis and to develop mt DNA marker affecting milk production traits in Hanwoo cows. The PCR was used to amplify an 1142 bp fragment within the D-loop region of mt DNA using specific primers. Mt DNA were digested with seven restriction enzymes and hybridized using DIG-labeled D-loop probe. The mt DNA RFLP polymorphisms were observed in the four enzymes, BamHI, RsaI, XbaI and HpaII. Nucleotide substitutions were detected at positions 441 (G/C), 469 (T/C), 503 (C/T), 569 (G/A), 614 (C/A) and 644 (C/T) of the mt DNA D-loop region between two selected lines. Significant relationship between the XbaI RFLP type and breeding value was found(p<0.05). Cows with A type had higher estimated breeding values than those with B type (P<0.05) between high and low milk production lines. Therefore, the RFLP marker of mt DNA could be used as a selection assisted tool for individuals with high milk producing ability in Hanwoo.

Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent

  • Lee, Jeong-Min;Park, Jeong-Min;Kang, Tae-Hong
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.566-571
    • /
    • 2016
  • Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy.

Transferability of Cupped Oyster EST (Expressed Sequence Tag)-Derived SNP (Single Nucleotide Polymorphism) Markers to Related Crassostrea and Ostrea Species

  • Kim, Woo-Jin;Jung, Hyungtaek;Shin, Eun-Ha;Baek, Ilseon
    • The Korean Journal of Malacology
    • /
    • v.30 no.3
    • /
    • pp.197-210
    • /
    • 2014
  • Single nucleotide polymorphisms (SNPs) are widely acknowledged as the marker of choice for many genetic and genomic applications because they show co-dominant inheritance, are highly abundant across genomes and are suitable for high-throughput genotyping. Here we evaluated the applicability of SNP markers developed from Crassostrea gigas and C. virginica expressed sequence tags (ESTs) in closely related Crassostrea and Ostrea species. A total of 213 putative interspecific level SNPs were identified from re-sequencing data in six amplicons, yielding on average of one interspecific level SNP per seven bp. High polymorphism levels were observed and the high success rate of transferability show that genic EST-derived SNP markers provide an efficient method for rapid marker development and SNP discovery in closely related oyster species. The six EST-SNP markers identified here will provide useful molecular tools for addressing questions in molecular ecology and evolution studies including for stock analysis (pedigree monitoring) in related oyster taxa.

Variability of Osteocalcin Status in Chinese Holstein Cattle: Do Phylogeny, Vitamin D or Gene Polymorphisms Matter?

  • Ferreri, Miro;Gao, Jian;Ren, Gaixian;Chen, Liben;Su, Jingliang;Han, Bo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.173-180
    • /
    • 2011
  • Osteocalcin (OC), a marker of bone turnover, displays patterns in relation to physiological and genetic factors. Here, we present an association study in a population of Chinese Holstein cattle (n = 24) with OC serum concentration as a phenotypic trait. We hypothesised that OC status is associated with phylogeny, vitamin D serum level and single nucleotide polymorphisms (SNPs). Mitochondrial DNA (mtDNA) was used as an unlinked marker to examine phylogeny and linkage to measured phenotypic traits of vitamin D and OC status. Following an association study with OC serum variability as the trait, genotyping of SNPs (n = 27) in OC-related genes was performed. Candidate SNPs were chosen in genes with an emphasis on the vitamin D and vitamin K pathways. Multivariant factor analysis revealed a correlation between vitamin D serum concentration and a SNP in the gene GC (rs43338565), which encodes a vitamin D-binding protein, as well as between a SNP in NFATc1 (rs42038422) and OC concentration. However, univariate analysis revealed that population structure, vitamin D serum levels and SNPs were not significant determinants of OC status in the studied group.

Association of selected gene polymorphisms with thermotolerance traits in cattle - A review

  • Hariyono, Dwi Nur Happy;Prihandini, Peni Wahyu
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1635-1648
    • /
    • 2022
  • Thermal stress due to extreme changes in the thermal environment is a critical issue in cattle production. Many previous findings have shown a decrease in feed intake, milk yield, growth rate, and reproductive efficiency of cattle when subjected to thermal stress. Therefore, selecting thermo-tolerant animals is the primary goal of the efficiency of breeding programs to reduce those adverse impacts. The recent advances in molecular genetics have provided significant breeding advantages that allow the identification of molecular markers in both beef and dairy cattle breeding, including marker-assisted selection (MAS) as a tool in selecting superior thermo-tolerant animals. Single-nucleotide polymorphisms (SNPs), which can be detected by DNA sequencing, are desirable DNA markers for MAS due to their abundance in the genome's coding and non-coding regions. Many SNPs in some genes (e.g., HSP70, HSP90, HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, and ATP1A1) in various breeds of cattle have been analyzed to play key roles in many cellular activities during thermal stress and protecting cells against stress, making them potential candidate genes for molecular markers of thermotolerance. This review highlights the associations of SNPs within these genes with thermotolerance traits (e.g., blood biochemistry and physiological responses) and suggests their potential use as MAS in thermotolerant cattle breeding.

A genome-wide association study on growth traits of Korean commercial pig breeds using Bayesian methods

  • Jong Hyun Jung;Sang Min Lee;Sang-Hyon Oh
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.807-816
    • /
    • 2024
  • Objective: This study aims to identify the significant regions and candidate genes of growth-related traits (adjusted backfat thickness [ABF], average daily gain [ADG], and days to 90 kg [DAYS90]) in Korean commercial GGP pig (Duroc, Landrace, and Yorkshire) populations. Methods: A genome-wide association study (GWAS) was performed using single-nucleotide polymorphism (SNP) markers for imputation to Illumina PorcineSNP60. The BayesB method was applied to calculate thresholds for the significance of SNP markers. The identified windows were considered significant if they explained ≥1% genetic variance. Results: A total of 28 window regions were related to genetic growth effects. Bayesian GWAS revealed 28 significant genetic regions including 52 informative SNPs associated with growth traits (ABF, ADG, DAYS90) in Duroc, Landrace, and Yorkshire pigs, with genetic variance ranging from 1.00% to 5.46%. Additionally, 14 candidate genes with previous functional validation were identified for these traits. Conclusion: The identified SNPs within these regions hold potential value for future marker-assisted or genomic selection in pig breeding programs. Consequently, they contribute to an improved understanding of genetic architecture and our ability to genetically enhance pigs. SNPs within the identified regions could prove valuable for future marker-assisted or genomic selection in pig breeding programs.

Genetic Variation of Cytochrome P450 Genes in Garlic Cultivars (마늘유래 Cytochrome P450 유전자의 변이 분석)

  • Kwon, Soon-Tae;Kamiya, Juli
    • Korean Journal of Plant Resources
    • /
    • v.24 no.5
    • /
    • pp.584-590
    • /
    • 2011
  • Wound inducible P450-Esg cDNA, one of cytochrome P450 gene family, was isolated from shoot of Euiseong garlic cultivar. P450-Esg cDNA possesses highly conserved heme-binding domain in the nucleotide sequence, and 1,419 bp of open reading frame (ORF) coding of 473 amino acids. Based on the nucleotide sequence analysis of P450-Esg homologous from twelve garlic cultivars, two domains, one domain between 472 to 510 bp, and the other between 1,210 to 1,249 bp from start codon (ATG), showed various nucleotide polymorphism among cultivars. Sequence of heme-binding domain in P450-Esg homologous, which is located at the domain between 1,210 to 1,240 bp from start codon, showed various nucleotide polymorphism as well as amino acid sequence polymorphism among twelve garlic cultivars. Anther domain, between 472 to 510 bp from start codon, showed exactly same amino acid sequence in the twelve garlic cultivars, but there were various single nucleotide polymorphism to the cultivars.