• Title/Summary/Keyword: Marker Efficiency

Search Result 206, Processing Time 0.032 seconds

A Biochemical Study for the Development of Genetic Marker on Salmonids in Korea (한국산 연어류에서 Genetic Marker 개발을 위한 생화학적 연구)

  • HONG Kyung-Pyo;MYOUNG Jung-Goo;SON Jin-Ki;PARK Chul-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.1
    • /
    • pp.83-88
    • /
    • 1994
  • For the purpose of genetic stock indentification of three species of salmonid fishs and their hybrid, lactate dehydrogenase(LDH), malate dehydrogenase(MDH), isocitrate dehydrogenase(IDH), a-gylycerophosphate dehydrogenase(a-GPDH), malic enzyme(ME), 6-phospho-gluconate dehydrogenase(6-PGD), phosphoglucose isomerase(PGI) and phospho-glucomutase(PGM) from skeletal muscle, liver, heart and gill tissues in all three species were analyzed. Chum and masu salmon showed no polymorphic patterns in all isozyme loci, however rainbow trout were found to have polymorphic patterns at MDH-B, LDH and IDH loci. Especially, significant differences were found at MDH-B loci between the three species and the IDH patterns of rainbow trout were also different from the other two species. These loci therefore can be utilized as efficient genetic markers for the identification of hybrids and improve the efficiency of fish breeding. There was no difference except PGI between diploid and triploid isozyme patterns but PGI showed some potential as a marker for triploid in masu salmon.

  • PDF

Strategies for Improving Potassium Use Efficiency in Plants

  • Shin, Ryoung
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.575-584
    • /
    • 2014
  • Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci.

Identification of Mating Type Loci and Development of SCAR Marker Genetically Linked to the B3 Locus in Pleurotus eryngii

  • Ryu, Jae-San;Kim, Min Keun;Ro, Hyeon-Su;Kang, Young Min;Kwon, Jin-Hyeuk;Kong, Won-Sik;Lee, Hyun-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1177-1184
    • /
    • 2012
  • In order to estimate how diverse the mating types in Pleurotus eryngii from different regions are, pairings between monokaryons derived from inter- and intra-groups were done. Sixteen and 15 alleles were identified at loci A and B from the 12 strains. In the P. eryngii KNR2312, widely used for commercial production, four mating loci, A3, A4, B3, and B4, were determined. Those loci, except A3, were found in 4 strains out of 12 strains. To improve breeding efficiency, especially in mating type determination, RAPD and BSA were performed to screen for a mating type specific marker. The SCAR marker 13-$2_{2100}$ was developed based on the RAPD-derived sequence typing B3 locus. The sequence analysis of 13-$2_{2100}$ revealed that it contained a conserved domain, the STE3 super-family, and consensus sequences like the TATA box and GC box. It seems likely that the SCAR marker region is a part of the pheromone receptor gene.

Development of a Molecular Marker Linked to the A4 Locus and the Structure of HD Genes in Pleurotus eryngii

  • Lee, Song Hee;Ali, Asjad;Ha, Byeongsuk;Kim, Min-Keun;Kong, Won-Sik;Ryu, Jae-San
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.200-206
    • /
    • 2019
  • Allelic differences in A and B mating-type loci are a prerequisite for the progression of mating in the genus Pleurotus eryngii; thus, the crossing is hampered by this biological barrier in inbreeding. Molecular markers linked to mating types of P. eryngii KNR2312 were investigated with randomly amplified polymorphic DNA to enhance crossing efficiency. An A4-linked sequence was identified and used to find the adjacent genomic region with the entire motif of the A locus from a contig sequenced by PacBio. The sequence-characterized amplified region marker $7-2_{299}$ distinguished A4 mating-type monokaryons from KNR2312 and other strains. A BLAST search of flanked sequences revealed that the A4 locus had a general feature consisting of the putative HD1 and HD2 genes. Both putative HD transcription factors contain a homeodomain sequence and a nuclear localization sequence; however, valid dimerization motifs were found only in the HD1 protein. The ACAAT motif, which was reported to have relevance to sex determination, was found in the intergenic region. The SCAR marker could be applicable in the classification of mating types in the P. eryngii breeding program, and the A4 locus could be the basis for a multi-allele detection marker.

Effect of Sonication and vir Genes on Transient Gene Expression in Agrobacterium-Mediated Transformation (Agrobacterium을 이용한 형질전환에서 sonication과 vir 유전자들의 효과)

  • 이병무
    • Journal of Life Science
    • /
    • v.11 no.4
    • /
    • pp.316-320
    • /
    • 2001
  • Sonication tremendously improves the efficiency of Agrobacterium infection by introducing small and uniform fissures and channels throughout the targeted tissue. Using shoot tips of cotton as explants, the effect of sonication treatment and virulence genes in Agrobacterium tumefaciens on transformation efficiency was investigated. The pat gene which encodes resistance to the herbicide, glufosinate, was used as a selectable marker. Transformation efficiency was evaluated on th basis of survival rates of cocultivated shoot tips on selection medium containing 2.5 mg/l gulfosinate-ammonium(ppt) adn 25. mg/l Clavamax. Sonication from 5 to 15 second has a positive effect on shoop tip survival. However, whil virE as well as virG or vir GN54D showed an enhancement in transformation efficiency, virE,. virG resulted in the most significant enhancement. Overall, the combination of additional virG/virE gene and sonication treatment resulted in the most significant increase in transformation efficiency.

  • PDF

Improvement of cultural efficiency using DNA markers in anther and seed culture of rice (DNA marker를 이용한 벼의 조직배양 효율개선)

  • Kim, Hong-Jib;Kim, Tae-Heon;Sohn, Jae-Keun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.27
    • /
    • pp.21-28
    • /
    • 2009
  • The purpose of this study was to improve the culturability of 'IR 36', a indica type rice cultivar using DNA marker associated with the ability of plant regeneration in anther and seed culture. The culturability of 6 rice cultivars and 2 indica/japonica lines ('MGRI 036', 'MGRI 079') were investigated in anther and seed culture. The culturability of 3 japonica rice cultivars were much higher than tongil and indica rice cultivars, and 'MGRI 036' and 'MGRI 079' has high culturability with 20% regenerability, also. 34 $BC_2F_4$ 4 lines were selected by marker screening using RZ400 among 90 $BC_2F_4$ lines derived from a cross between 'MGRI 079' and 'IR 36'. The frequency of callus formation of 10 $BC_2F_4$ lines were higher than 'IR 36' in anther culture among selected 34 $BC_2F_4$ lines. The ability of plant regeneration of 10 lines were higher than 'IR 36' in the seed culture among selected 34 $BC_2F_4$ lines. A promising line, $BC_2F_4$-28, was selected to have better culturability in the anther and seed culture among selected 34 $BC_2F_4$ lines. The heading date and grain shape of the $BC_2F_4$-28 was similar to 'IR 36'. Using the RZ400 DNA marker associated with the culturability will be useful method for improving of indica rice culticvar's culturability in rice breeding program.

  • PDF

Association of selected gene polymorphisms with thermotolerance traits in cattle - A review

  • Hariyono, Dwi Nur Happy;Prihandini, Peni Wahyu
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1635-1648
    • /
    • 2022
  • Thermal stress due to extreme changes in the thermal environment is a critical issue in cattle production. Many previous findings have shown a decrease in feed intake, milk yield, growth rate, and reproductive efficiency of cattle when subjected to thermal stress. Therefore, selecting thermo-tolerant animals is the primary goal of the efficiency of breeding programs to reduce those adverse impacts. The recent advances in molecular genetics have provided significant breeding advantages that allow the identification of molecular markers in both beef and dairy cattle breeding, including marker-assisted selection (MAS) as a tool in selecting superior thermo-tolerant animals. Single-nucleotide polymorphisms (SNPs), which can be detected by DNA sequencing, are desirable DNA markers for MAS due to their abundance in the genome's coding and non-coding regions. Many SNPs in some genes (e.g., HSP70, HSP90, HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, and ATP1A1) in various breeds of cattle have been analyzed to play key roles in many cellular activities during thermal stress and protecting cells against stress, making them potential candidate genes for molecular markers of thermotolerance. This review highlights the associations of SNPs within these genes with thermotolerance traits (e.g., blood biochemistry and physiological responses) and suggests their potential use as MAS in thermotolerant cattle breeding.

Identification of QTLs Associated with Physiological Nitrogen Use Efficiency in Rice

  • Cho, Young-Il;Jiang, Wenzhu;Chin, Joong-Hyoun;Piao, Zhongze;Cho, Yong-Gu;McCouch, Susan R.;Koh, Hee-Jong
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.72-79
    • /
    • 2007
  • Demand for low-input sustainable crop cultivation is increasing to meet the need for environment-friendly agriculture. Consequently, developing genotypes with high nutrient use efficiency is one of the major objectives of crop breeding programs. This study was conducted to identify QTLs for traits associated with physiological nitrogen use efficiency (PNUE). A recombinant inbred population (DT-RILs) between Dasanbyeo (a tongil type rice, derived from an indica ${\times}$ japonica cross and similar to indica in its genetic make-up) and TR22183 (a Chinese japonica variety) consisting of 166 $F_8$ lines was developed and used for mapping. A frame map of 1,409 cM containing 113 SSR and 103 STS markers with an average interval of 6.5 cM between adjacent marker loci was constructed using the DT-RILs. The RILs were cultivated in ordinary-N ($N-P_2O_5-K_2O=100-80-80kg/ha$) and low-N ($N-P_2O_5-K_2O=50-80-80kg/ha$) (100 kg/ha) conditions. PNUE was positively correlated with the harvest index and grain yield in both conditions. Twenty single QTLs (S-QTLs) and 58 pairs of epistatic loci (E-QTLs) were identified for the nitrogen concentration of grain, nitrogen concentration of straw, nitrogen content of shoot, harvest index, grain yield, straw yield and PNUE in both conditions. The phenotypic variance explained by these S-QTLs and E-QTLs ranged from 11.1 to 44.3% and from 16.0% to 63.6%, respectively. The total phenotypic variance explained by all the QTLs for each trait ranged from 35.8% to 71.3%, showing that the expression of PNUE and related characters depends signify- cantly upon genetic factors. Both S-QTLs and E-QTLs may be useful for marker-assisted selection (MAS) to develop higher PNUE genotypes.