DOI QR코드

DOI QR Code

Strategies for Improving Potassium Use Efficiency in Plants

  • Shin, Ryoung (RIKEN Center for Sustainable Resource Science)
  • Received : 2014.05.30
  • Accepted : 2014.06.02
  • Published : 2014.08.31

Abstract

Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci.

Keywords

References

  1. Ache, P., Becker, D., Ivashikina, N., Dietrich, P., Roelfsema, M.R., and Hedrich, R. (2000). GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a $K^+$-selective, $K^+$-sensing ion channel. FEBS Lett. 486, 93-98. https://doi.org/10.1016/S0014-5793(00)02248-1
  2. Ache, P., Becker, D., Deeken, R., Dreyer, I., Weber, H., Fromm, J., and Hedrich, R. (2001). VFK1, a Vicia faba $K^+$ channel involved in phloem unloading. Plant J. 27, 571-580. https://doi.org/10.1046/j.1365-313X.2001.t01-1-01116.x
  3. Adams, E., and Shin, R. (2014). Transport, signaling, and homeostasis of potassium and sodium in plants. J. Integr. Plant Biol. 56, 231-249. https://doi.org/10.1111/jipb.12159
  4. Adams, E., Diaz, C., Matsui, M., and Shin, R. (2014). Overexpression of a novel component induces HAK5 and enhances growth in Arabidopsis. ISRN Bot. 2014, Article ID 490252.
  5. Ahn, S.J., Shin, R., and Schachtman, D.P. (2004). Expression of KT/KUP genes in Arabidopsis and the role of root hairs in $K^+$ uptake. Plant Physiol. 134, 1135-1145. https://doi.org/10.1104/pp.103.034660
  6. Amtmann, A., and Armengaud, P. (2007). The role of calcium sensor-interacting protein kinases in plant adaptation to potassiumdeficiency: new answers to old questions. Cell Res. 17, 483-485. https://doi.org/10.1038/cr.2007.49
  7. Amtmann, A., and Armengaud, P. (2009). Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr. Opin. Plant Biol. 12, 275-283. https://doi.org/10.1016/j.pbi.2009.04.014
  8. Amtmann, A., and Blatt, M.R. (2009). Regulation of macronutrient transport. New Phytol. 181, 35-52. https://doi.org/10.1111/j.1469-8137.2008.02666.x
  9. Amtmann, A., Hammond, J.P., Armengaud, P., and White, P.J. (2006). Nutrient sensing and signalling in plants: Potassium and phosphorus. Adv. Bot. Res. 43, 209-257.
  10. Aranda-Sicilia, M.N., Cagnac, O., Chanroj, S., Sze, H., Rodriguez-Rosales, M.P., and Venema, K. (2012). Arabidopsis KEA2, a homolog of bacterial KefC, encodes a $K^+$/$H^+$ antiporter with a chloroplast transit peptide. Biochim. Biophys. Acta 1818, 2362-2371. https://doi.org/10.1016/j.bbamem.2012.04.011
  11. Armengaud, P., Breitling, R., and Amtmann, A. (2004). The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 136, 2556-2576. https://doi.org/10.1104/pp.104.046482
  12. Armengaud, P., Breitling, R., and Amtmann, A. (2010). Coronatineinsensitive 1 (COI1) mediates transcriptional responses of Arabidopsis thaliana to external potassium supply. Mol. Plant 3, 390-405. https://doi.org/10.1093/mp/ssq012
  13. Ashley, M.K., Grant, M., and Grabov, A. (2006). Plant responses to potassium deficiencies: a role for potassium transport proteins. J. Exp. Bot. 57, 425-436.
  14. Banuelos, M.A., Garciadeblas, B., Cubero, B., and Rodriguez-Navarro, A. (2002). Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol. 130, 784-795. https://doi.org/10.1104/pp.007781
  15. Bassil, E., Coku, A., and Blumwald, E. (2012). Cellular ion homeostasis: emerging roles of intracellular NHX $Na^+$/$H^+$ antiporters in plant growth and development. J. Exp. Bot. 63, 5727-5740. https://doi.org/10.1093/jxb/ers250
  16. Becker, D., Hoth, S., Ache, P., Wenkel, S., Roelfsema, M.R., Meyerhoff, O., Hartung, W., and Hedrich, R. (2003). Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett. 554, 119-126. https://doi.org/10.1016/S0014-5793(03)01118-9
  17. Berthomieu, P., Conejero, G., Nublat, A., Brackenbury, W.J., Lambert, C., Savio, C., Uozumi, N., Oiki, S., Yamada, K., Cellier, F., et al. (2003). Functional analysis of AtHKT1 in Arabidopsis shows that $Na^+$ recirculation by the phloem is crucial for salt tolerance. EMBO J. 22, 2004-2014. https://doi.org/10.1093/emboj/cdg207
  18. Britto, D.T., and Kronzucker, H.J. (2008). Cellular mechanisms of potassium transport in plants. Physiol. Plant. 133, 637-650. https://doi.org/10.1111/j.1399-3054.2008.01067.x
  19. Brown, L.K., George, T.S., Dupuy, L.X., and White, P.J. (2013). A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? Ann. Bot. 112, 317-330. https://doi.org/10.1093/aob/mcs231
  20. Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 168, 521-530. https://doi.org/10.1002/jpln.200420485
  21. Cellier, F., Conejero, G., Ricaud, L., Luu, D.T., Lepetit, M., Gosti, F., and Casse, F. (2004). Characterization of AtCHX17, a member of the cation/$H^+$ exchangers, CHX family, from Arabidopsis thaliana suggests a role in $K^+$ homeostasis. Plant J. 39, 834-846. https://doi.org/10.1111/j.1365-313X.2004.02177.x
  22. Chao, D.Y., Dilkes, B., Luo, H., Douglas, A., Yakubova, E., Lahner, B., and Salt, D.E. (2013). Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341, 658-659. https://doi.org/10.1126/science.1240561
  23. Cherel, I., Michard, E., Platet, N., Mouline, K., Alcon, C., Sentenac, H., and Thibaud, J.B. (2002). Physical and functional interaction of the Arabidopsis $K^+$ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14, 1133-1146. https://doi.org/10.1105/tpc.000943
  24. Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C., et al. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973-977. https://doi.org/10.1038/nature02076
  25. Czempinski, K., Zimmermann, S., Ehrhardt, T., and Muller-Rober, B. (1997). New structure and function in plant $K^+$ channels: KCO1, an outward rectifier with a steep $Ca^{2+}$ dependency. EMBO J. 16, 2565-2575. https://doi.org/10.1093/emboj/16.10.2565
  26. Czempinski, K., Frachisse, J.M., Maurel, C., Barbier-Brygoo, H., and Mueller-Roeber, B. (2002). Vacuolar membrane localization of the Arabidopsis ‘two-pore' $K^+$ channel KCO1. Plant J. 29, 809-820. https://doi.org/10.1046/j.1365-313X.2002.01260.x
  27. Corratge-Faillie, C., Jabnoune, M., Zimmermann, S., Very, A.A., Fizames, C., and Sentenac, H. (2010). Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell. Mol. Life Sci. 67, 2511-2532. https://doi.org/10.1007/s00018-010-0317-7
  28. Damas, J.M., Oliveira, A.S., Baptista, A.M., and Soares, C.M. (2011). Structural consequences of ATP hydrolysis on the ABC transporter NBD dimer: molecular dynamics studies of HlyB. Protein Sci. 20, 1220-1230. https://doi.org/10.1002/pro.650
  29. Daram, P., Urbach, S., Gaymard, F., Sentenac, H., and Cherel, I. (1997). Tetramerization of the AKT1 plant potassium channel involves its C-terminal cytoplasmic domain. EMBO J. 16, 3455-3463. https://doi.org/10.1093/emboj/16.12.3455
  30. Davenport, R.J., Munoz-Mayor, A., Jha, D., Essah, P.A., Rus, A., and Tester, M. (2007). The $Na^+$ transporter AtHKT1;1 controls retrieval of $Na^+$ from the xylem in Arabidopsis. Plant Cell Environ. 30, 497-507. https://doi.org/10.1111/j.1365-3040.2007.01637.x
  31. Dean, G., Casson, S., and Lindsey, K. (2004). KNAT6 gene of Arabidopsis is expressed in roots and is required for correct lateral root formation. Plant Mol. Biol. 54, 71-84. https://doi.org/10.1023/B:PLAN.0000028772.22892.2d
  32. Deeken, R., Geiger, D., Fromm, J., Koroleva, O., Ache, P., Langenfeld-Heyser, R., Sauer, N., May, S.T., and Hedrich, R. (2002). Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216, 334-344. https://doi.org/10.1007/s00425-002-0895-1
  33. Deeken, R., Ivashikina, N., Czirjak, T., Philippar, K., Becker, D., Ache, P., and Hedrich, R. (2003). Tumour development in Arabidopsis thaliana involves the Shaker-like $K^+$ channels AKT1 and AKT2/3. Plant J. 34, 778-787. https://doi.org/10.1046/j.1365-313X.2003.01766.x
  34. Demidchik, V., Davenport, R.J., and Tester, M. (2002). Nonselective cation channels in plants. Annu. Rev. Plant Biol. 53, 67-107. https://doi.org/10.1146/annurev.arplant.53.091901.161540
  35. Desbrosses, G., Josefsson, C., Rigas, S., Hatzopoulos, P., and Dolan, L. (2003). AKT1 and TRH1 are required during root hair elongation in Arabidopsis. J. Exp. Bot. 54, 781-788. https://doi.org/10.1093/jxb/erg066
  36. Duby, G., Hosy, E., Fizames, C., Alcon, C., Costa, A., Sentenac, H., and Thibaud, J.B. (2008). AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant $K^+$ channels. Plant J. 53, 115-123. https://doi.org/10.1111/j.1365-313X.2007.03324.x
  37. Epstein, E., Rains, D.W., and Elzam, O.E. (1963). Resolution of dual mechanisms of potassium absorption by barley roots. Proc. Natl. Acad. Sci. USA 49, 684-692. https://doi.org/10.1073/pnas.49.5.684
  38. Food and Agriculture Organization of the United Nations (2006). Fertilizer use by crop. FAO publications, Rome, Italy.
  39. Frietsch, S., Wang, Y.F., Sladek, C., Poulsen, L.R., Romanowsky, S.M., Schroeder, J.I., and Harper, J.F. (2007). A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc. Natl. Acad. Sci. USA 104, 14531-14536. https://doi.org/10.1073/pnas.0701781104
  40. Fu, H.H., and Luan, S. (1998). AtKuP1: a dual-affinity $K^+$ transporter from Arabidopsis. Plant Cell 10, 63-73.
  41. Garciadeblas, B., Senn, M.E., Banuelos, M.A., and Rodriguez-Navarro, A. (2003). Sodium transport and HKT transporters: the rice model. Plant J. 34, 788-801. https://doi.org/10.1046/j.1365-313X.2003.01764.x
  42. Gattward, J.N., Almeida, A.A., Souza, J.O., Jr., Gomes, F.P., and Kronzucker, H.J. (2012). Sodium-potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition. Physiol. Plant. 146, 350-362. https://doi.org/10.1111/j.1399-3054.2012.01621.x
  43. Gaxiola, R.A., Rao, R., Sherman, A., Grisafi, P., Alper, S.L., and Fink, G.R. (1999). The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA 96, 1480-1485. https://doi.org/10.1073/pnas.96.4.1480
  44. Geiger, D., Becker, D., Vosloh, D., Gambale, F., Palme, K., Rehers, M., Anschuetz, U., Dreyer, I., Kudla, J., and Hedrich, R. (2009). Heteromeric AtKC1.AKT1 channels in Arabidopsis roots facilitate growth under $K^+$-limiting conditions. J. Biol. Chem. 284, 21288-21295. https://doi.org/10.1074/jbc.M109.017574
  45. Gierth, M., Maser, P., and Schroeder, J.I. (2005). The potassium transporter AtHAK5 functions in $K^+$ deprivation-induced highaffinity $K^+$ uptake and AKT1 $K^+$ channel contribution to $K^+$ uptake kinetics in Arabidopsis roots. Plant Physiol. 137, 1105-1114. https://doi.org/10.1104/pp.104.057216
  46. Grabov, A. (2007). Plant KT/KUP/HAK potassium transporters: single family - multiple functions. Ann. Bot. 99, 1035-1041. https://doi.org/10.1093/aob/mcm066
  47. Guerrero-Mendiola, C., Oria-Hernandez, J., and Ramirez-Silva, L. (2009). Kinetics of the thermal inactivation and aggregate formation of rabbit muscle pyruvate kinase in the presence of trehalose. Arch. Biochem. Biophys. 490, 129-136. https://doi.org/10.1016/j.abb.2009.08.012
  48. Hao, J., Tu, L., Hu, H., Tan, J., Deng, F., Tang, W., Nie, Y., and Zhang, X. (2012). GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J. Exp. Bot. 63, 6267-6281. https://doi.org/10.1093/jxb/ers278
  49. Hastings, D.F., and Gutknecht, J. (1978). Potassium and turgor pressure in plants. J. Theor. Biol. 73, 363-366. https://doi.org/10.1016/0022-5193(78)90197-2
  50. Held, K., Pascaud, F., Eckert, C., Gajdanowicz, P., Hashimoto, K., Corratge-Faillie, C., Offenborn, J.N., Lacombe, B., Dreyer, I., Thibaud, J.B., et al. (2011). Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res. 21, 1116-1130. https://doi.org/10.1038/cr.2011.50
  51. Hirsch, R.E., Lewis, B.D., Spalding, E.P., and Sussman, M.R. (1998). A role for the AKT1 potassium channel in plant nutrition. Science 280, 918-921. https://doi.org/10.1126/science.280.5365.918
  52. Ho, C.H., Lin, S.H., Hu, H.C., and Tsay, Y.F. (2009). CHL1 functions as a nitrate sensor in plants. Cell 138, 1184-1194. https://doi.org/10.1016/j.cell.2009.07.004
  53. Hogh-Jensen, H., and Pedersen, M.B. (2003). Morphological plasticity by crop plants and their potassium use efficiency. J. Plant Nutr. 26, 969-984. https://doi.org/10.1081/PLN-120020069
  54. Holzmueller, E.J., Jose, S., and Jenkins, M.A. (2007). Influence of calcium, potassium, and magnesium on Cornus florida L. density and resistance to dogwood anthracnose. Plant Soil 290, 189-199. https://doi.org/10.1007/s11104-006-9151-y
  55. Hong, J.P., Takeshi, Y., Kondou, Y., Schachtman, D.P., Matsui, M., and Shin, R. (2013). Identification and characterization of transcription factors regulating Arabidopsis HAK5. Plant Cell Physiol. 54, 1478-1490. https://doi.org/10.1093/pcp/pct094
  56. Honsbein, A., Sokolovski, S., Grefen, C., Campanoni, P., Pratelli, R., Paneque, M., Chen, Z., Johansson, I., and Blatt, M.R. (2009). A tripartite SNARE-$K^+$ channel complex mediates in channeldependent $K^+$ nutrition in Arabidopsis. Plant Cell 21, 2859-2877. https://doi.org/10.1105/tpc.109.066118
  57. Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S., and Shinmyo, A. (2001). Two types of HKT transporters with different properties of $Na^+$ and $K^+$ transport in Oryza sativa. Plant J. 27, 129-138. https://doi.org/10.1046/j.1365-313x.2001.01077.x
  58. Horie, T., Costa, A., Kim, T.H., Han, M.J., Horie, R., Leung, H.Y., Miyao, A., Hirochika, H., An, G., and Schroeder, J.I. (2007). Rice OsHKT2;1 transporter mediates large $Na^+$ influx component into $K^+$-starved roots for growth. EMBO J. 26, 3003-3014. https://doi.org/10.1038/sj.emboj.7601732
  59. Hwang, H., Yoon, J., Kim, H.Y., Min, M.K., Kim, J.A., Choi, E.H., Lan, W., Bae, Y.M., Luan, S., Cho, H., et al. (2013a). Unique features of two potassium channels, OsKAT2 and OsKAT3, expressed in rice guard cells. PLoS One 8, e72541. https://doi.org/10.1371/journal.pone.0072541
  60. Hwang, H., Yoon, J.Y., Cho, H., and Kim, B.G. (2013b). OsKAT2 is the prevailing functional inward rectifier potassium channels in rice guard cell. Plant Signal. Behav. 8, e26643. https://doi.org/10.4161/psb.26643
  61. Ivashikina, N., Becker, D., Ache, P., Meyerhoff, O., Felle, H.H., and Hedrich, R. (2001). $K^+$ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett. 508, 463-469. https://doi.org/10.1016/S0014-5793(01)03114-3
  62. Ivashikina, N., Deeken, R., Fischer, S., Ache, P., and Hedrich, R. (2005). AKT2/3 subunits render guard cell $K^+$ channels $Ca^{2+}$ sensitive. J. Gen. Physiol. 125, 483-492. https://doi.org/10.1085/jgp.200409211
  63. Jeanguenin, L., Alcon, C., Duby, G., Boeglin, M., Cherel, I., Gaillard, I., Zimmermann, S., Sentenac, H., and Very, A.A. (2011). AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity. Plant J. 67, 570-582. https://doi.org/10.1111/j.1365-313X.2011.04617.x
  64. Jung, J.Y., Shin, R., and Schachtman, D.P. (2009). Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 21, 607-621. https://doi.org/10.1105/tpc.108.063099
  65. Kim, M.J., Shin, R., and Schachtman, D.P. (2009). A nuclear factor regulates abscisic acid responses in Arabidopsis. Plant Physiol. 151, 1433-1445. https://doi.org/10.1104/pp.109.144766
  66. Kim, M.J., Ciani, S., and Schachtman, D.P. (2010). A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol. Plant 3, 420-427. https://doi.org/10.1093/mp/ssp121
  67. Kim, M.J., Ruzicka, D., Shin, R., and Schachtman, D.P. (2012). The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol. Plant 5, 1042-1057. https://doi.org/10.1093/mp/sss003
  68. Kirik, V., Simon, M., Huelskamp, M., and Schiefelbein, J. (2004). The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev. Biol. 268, 506-513. https://doi.org/10.1016/j.ydbio.2003.12.037
  69. Kudla, J., Xu, Q., Harter, K., Gruissem, W., and Luan, S. (1999). Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc. Natl. Acad. Sci. USA 96, 4718-4723. https://doi.org/10.1073/pnas.96.8.4718
  70. Lacombe, B., Becker, D., Hedrich, R., DeSalle, R., Hollmann, M., Kwak, J.M., Schroeder, J.I., Le Novere, N., Nam, H.G., Spalding, E.P., et al. (2001). The identity of plant glutamate receptors. Science 292, 1486-1487.
  71. Lan, W.Z., Lee, S.C., Che, Y.F., Jiang, Y.Q., and Luan, S. (2011). Mechanistic analysis of AKT1 regulation by the CBL-CIPKPP2CA interactions. Mol. Plant 4, 527-536. https://doi.org/10.1093/mp/ssr031
  72. Latz, A., Becker, D., Hekman, M., Muller, T., Beyhl, D., Marten, I., Eing, C., Fischer, A., Dunkel, M., Bertl, A., et al. (2007). TPK1, a $Ca^{2+}$-regulated Arabidopsis vacuole two-pore $K^+$ channel is activated by 14-3-3 proteins. Plant J. 52, 449-459. https://doi.org/10.1111/j.1365-313X.2007.03255.x
  73. Lebaudy, A., Pascaud, F., Very, A.A., Alcon, C., Dreyer, I., Thibaud, J.B., and Lacombe, B. (2010). Preferential KAT1-KAT2 heteromerization determines inward $K^+$ current properties in Arabidopsis guard cells. J. Biol. Chem. 285, 6265-6274. https://doi.org/10.1074/jbc.M109.068445
  74. Leigh, R.A., and Wyn Jones, R.G. (1984). A hypothesis relating critical potassium concentrations for growth to the distribution and function of this ion in the plant cell. New Phytol. 97, 1-13. https://doi.org/10.1111/j.1469-8137.1984.tb04103.x
  75. Leng, Q., Mercier, R.W., Yao, W., and Berkowitz, G.A. (1999). Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol. 121, 753-761. https://doi.org/10.1104/pp.121.3.753
  76. Leng, Q., Mercier, R.W., Hua, B.G., Fromm, H., and Berkowitz, G.A. (2002). Electrophysiological analysis of cloned cyclic nucleotidegated ion channels. Plant Physiol. 128, 400-410. https://doi.org/10.1104/pp.010832
  77. Leung, Y.M., Kwan, E.P., Ng, B., Kang, Y., and Gaisano, H.Y. (2007). SNAREing voltage-gated $K^+$ and ATP-sensitive $K^+$ channels: tuning beta-cell excitability with syntaxin-1A and other exocytotic proteins. Endocr. Rev. 28, 653-663. https://doi.org/10.1210/er.2007-0010
  78. Leyman, B., Geelen, D., Quintero, F.J., and Blatt, M.R. (1999). A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283, 537-540. https://doi.org/10.1126/science.283.5401.537
  79. Liesche, J., Schulz, A., Krugel, U., Grimm, B., and Kuhn, C. (2008). Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements. Plant Signal. Behav. 3, 1136-1137. https://doi.org/10.4161/psb.3.12.7096
  80. Liu, K., Li, L., and Luan, S. (2006). Intracellular $K^+$ sensing of SKOR, a Shaker-type $K^+$ channel from Arabidopsis. Plant J. 46, 260-268. https://doi.org/10.1111/j.1365-313X.2006.02689.x
  81. Liu, H., Tang, R., Zhang, Y., Wang, C., Lv, Q., Gao, X., Li, W., and Zhang, H. (2010). AtNHX3 is a vacuolar $K^+$/$H^+$ antiporter required for low-potassium tolerance in Arabidopsis thaliana. Plant Cell Environ. 33, 1989-1999. https://doi.org/10.1111/j.1365-3040.2010.02200.x
  82. Liu, L.L., Ren, H.M., Chen, L.Q., Wang, Y., and Wu, W.H. (2013). A protein kinase, calcineurin B-like protein-interacting protein kinase9, interacts with calcium sensor calcineurin B-like protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis. Plant Physiol. 161, 266-277. https://doi.org/10.1104/pp.112.206896
  83. Lu, Y.X., Chanroj, S., Zulkifli, L., Johnson, M.A., Uozumi, N., Cheung, A., and Sze, H. (2011). Pollen tubes lacking a pair of $K^+$ transporters fail to target ovules in Arabidopsis. Plant Cell 23, 81-93. https://doi.org/10.1105/tpc.110.080499
  84. Luan, S., Lan, W., and Lee, S.C. (2009). Potassium nutrition, sodium toxicity, and calcium signaling:connections through the CBL-CIPK network. Curr. Opin. Plant Biol. 12, 339-346. https://doi.org/10.1016/j.pbi.2009.05.003
  85. Ma, W., Ali, R., and Berkowitz, G.A. (2006). Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol. Biochem. 44, 494-505. https://doi.org/10.1016/j.plaphy.2006.08.007
  86. Maathuis, F.J., and Sanders, D. (1992). Plant membrane transport. Curr. Opin. Cell Biol. 4, 661-669. https://doi.org/10.1016/0955-0674(92)90087-S
  87. Martin, T., Frommer, W.B., Salanoubat, M., and Willmitzer, L. (1993). Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J. 4, 367-377. https://doi.org/10.1046/j.1365-313X.1993.04020367.x
  88. Maser, P., Thomine, S., Schroeder, J.I., Ward, J.M., Hirschi, K., Sze, H., Talke, I.N., Amtmann, A., Maathuis, F.J.M., Sanders, D., et al. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126, 1646-1667. https://doi.org/10.1104/pp.126.4.1646
  89. Maser, P., Hosoo, Y., Goshima, S., Horie, T., Eckelman, B., Yamada, K., Yoshida, K., Bakker, E.P., Shinmyo, A., Oiki, S., et al. (2002). Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc. Natl. Acad. Sci. USA 99, 6428-6433. https://doi.org/10.1073/pnas.082123799
  90. Montiel, G., Gantet, P., Jay-Allemand, C., and Breton, C. (2004). Transcription factor networks. Pathways to the knowledge of root development. Plant Physiol. 136, 3478-3485. https://doi.org/10.1104/pp.104.051029
  91. Morcuende, R., Bari, R., Gibon, Y., Zheng, W., Pant, B.D., Blasing, O., Usadel, B., Czechowski, T., Udvardi, M.K., Stitt, M., et al. (2007). Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ. 30, 85-112. https://doi.org/10.1111/j.1365-3040.2006.01608.x
  92. Mottaleb, S.A., Rodriguez-Navarro, A., and Haro, R. (2013). Knockouts of Physcomitrella patens CHX1 and CHX2 transporters reveal high complexity of potassium homeostasis. Plant Cell Physiol. 54, 1455-1468. https://doi.org/10.1093/pcp/pct096
  93. Nam, Y.J., Tran, L.S., Kojima, M., Sakakibara, H., Nishiyama, R., and Shin, R. (2012). Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis. PLoS One 7, e47797. https://doi.org/10.1371/journal.pone.0047797
  94. Nieves-Cordones, M., Aleman, F., Martinez, V., and Rubio, F. (2010). The Arabidopsis thaliana HAK5 $K^+$ transporter is required for plant growth and $K^+$ acquisition from low $K^+$ solutions under saline conditions. Mol. Plant 3, 326-333. https://doi.org/10.1093/mp/ssp102
  95. Oecking, C., and Jaspert, N. (2009). Plant 14-3-3 proteins catch up with their mammalian orthologs. Curr. Opin. Plant Biol. 12, 760-765. https://doi.org/10.1016/j.pbi.2009.08.003
  96. Oria-Hernandez, J., Cabrera, N., Perez-Montfort, R., and Ramirez-Silva, L. (2005). Pyruvate kinase revisited: the activating effect of $K^+$. J. Biol. Chem. 280, 37924-37929. https://doi.org/10.1074/jbc.M508490200
  97. Oria-Hernandez, J., Riveros-Rosas, H., and Ramirez-Silva, L. (2006). Dichotomic phylogenetic tree of the pyruvate kinase family: $K^+$ -dependent and -independent enzymes. J. Biol. Chem. 281, 30717-30724. https://doi.org/10.1074/jbc.M605310200
  98. Padmanaban, S., Chanroj, S., Kwak, J.M., Li, X., Ward, J.M., and Sze, H. (2007). Participation of endomembrane cation/$H^+$ exchanger AtCHX20 in osmoregulation of guard cells. Plant Physiol. 144, 82-93. https://doi.org/10.1104/pp.106.092155
  99. Pajonk, S., Kwon, C., Clemens, N., Panstruga, R., and Schulze-Lefert, P. (2008). Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J. Biol. Chem. 283, 26974-26984. https://doi.org/10.1074/jbc.M805236200
  100. Pettogrew, W.T. (2008). Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 133, 670-681. https://doi.org/10.1111/j.1399-3054.2008.01073.x
  101. Philippar, K., Ivashikina, N., Ache, P., Christian, M., Luthen, H., Palme, K., and Hedrich, R. (2004). Auxin activates KAT1 and KAT2, two $K^+$-channel genes expressed in seedlings of Arabidopsis thaliana. Plant J. 37, 815-827. https://doi.org/10.1111/j.1365-313X.2003.02006.x
  102. Philippar, K., Buchsenschutz, K., Edwards, D., Loffler, J., Luthen, H., Kranz, E., Edwards, K.J., and Hedrich, R. (2006). The auxininduced $K^+$ channel gene Zmk1 in maize functions in coleoptile growth and is required for embryo development. Plant Mol. Biol. 61, 757-768. https://doi.org/10.1007/s11103-006-0047-2
  103. Pilot, G., Lacombe, B., Gaymard, F., Cherel, I., Boucherez, J., Thibaud, J.B., and Sentenac, H. (2001). Guard cell inward $K^+$ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J. Biol. Chem. 276, 3215-3221. https://doi.org/10.1074/jbc.M007303200
  104. Qi, Z., and Spalding, E.P. (2004). Protection of plasma membrane $K^+$ transport by the salt overly sensitive1 $Na^+$-$H^+$ antiporter during salinity stress. Plant Physiol. 136, 2548-2555. https://doi.org/10.1104/pp.104.049213
  105. Qi, Z., Hampton, C.R., Shin, R., Barkla, B.J., White, P.J., and Schachtman, D.P. (2008). The high affinity $K^+$ transporter AtHAK5 plays a physiological role in planta at very low $K^+$ concentrations and provides a caesium uptake pathway in Arabidopsis. J. Exp. Bot. 59, 595-607. https://doi.org/10.1093/jxb/erm330
  106. Rajan, S., Preisig-Muller, R., Wischmeyer, E., Nehring, R., Hanley, P.J., Renigunta, V., Musset, B., Schlichthorl, G., Derst, C., Karschin, A., et al. (2002). Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J. Physiol. 545, 13-26. https://doi.org/10.1113/jphysiol.2002.027052
  107. Ramirez-Silva, L., and Oria-Hernandez, J. (2003). Selectivity of pyruvate kinase for $Na^+$ and $K^+$ in water/dimethylsulfoxide mixtures. Eur. J. Biochem. 270, 2377-2385. https://doi.org/10.1046/j.1432-1033.2003.03605.x
  108. Ramirez-Silva, L., de Gomez-Puyou, M.T., and Gomez-Puyou, A. (1993). Water-induced transitions in the $K^+$ requirements for the activity of pyruvate kinase entrapped in reverse micelles. Biochemistry 32, 5332-5338. https://doi.org/10.1021/bi00071a008
  109. Ramirez-Silva, L., Ferreira, S.T., Nowak, T., Tuena de Gomez-Puyou, M., and Gomez-Puyou, A. (2001). Dimethylsulfoxide promotes $K^+$-independent activity of pyruvate kinase and the acquisition of the active catalytic conformation. Eur. J. Biochem. 268, 3267-3274. https://doi.org/10.1046/j.1432-1327.2001.02222.x
  110. Ren, X.L., Qi, G.N., Feng, H.Q., Zhao, S., Zhao, S.S., Wang, Y., and Wu, W.H. (2013). Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates $K^+$ homeostasis in Arabidopsis. Plant J. 74, 258-266. https://doi.org/10.1111/tpj.12123
  111. Rengel, Z., and Damon, P.M. (2008). Crops and genotypes differ in efficiency of potassium uptake and use. Physiol. Plant. 133, 624-636. https://doi.org/10.1111/j.1399-3054.2008.01079.x
  112. Rigas, S., Debrosses, G., Haralampidis, K., Vicente-Agullo, F., Feldmann, K.A., Grabov, A., Dolan, L., and Hatzopoulos, P. (2001). TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13, 139-151. https://doi.org/10.1105/tpc.13.1.139
  113. Roberts, M.R. (2003). 14-3-3 proteins find new partners in plant cell signalling. Trends Plant Sci. 8, 218-223. https://doi.org/10.1016/S1360-1385(03)00056-6
  114. Rodriguez-Rosales, M.P., Galvez, F.J., Huertas, R., Aranda, M.N., Baghour, M., Cagnac, O., and Venema, K. (2009). Plant NHX cation/proton antiporters. Plant Signal. Behav. 4, 265-276. https://doi.org/10.4161/psb.4.4.7919
  115. Ros, R., Lemaillet, G., Fonrouge, A.G., Daram, P., Enjuto, M., Salmon, J.M., Thibaud, J.B., and Sentenac, H. (1999). Molecular determinants of the Arabidopsis AKT1 $K^+$ channel ionic selectivity investigated by expression in yeast of randomly mutated channels. Physiol. Plant. 105, 459-468. https://doi.org/10.1034/j.1399-3054.1999.105310.x
  116. Roy, S.J., Gilliham, M., Berger, B., Essah, P.A., Cheffings, C., Miller, A.J., Davenport, R.J., Liu, L.H., Skynner, M.J., Davies, J.M., et al. (2008). Investigating glutamate receptor-like gene coexpression in Arabidopsis thaliana. Plant Cell Environ. 31, 861-871. https://doi.org/10.1111/j.1365-3040.2008.01801.x
  117. Rubio, F., Santa-Maria, G.E., and Rodriguez-Navarro, A. (2000). Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol. Plant. 109, 34-43. https://doi.org/10.1034/j.1399-3054.2000.100106.x
  118. Santa-Maria, G.E., Rubio, F., Dubcovsky, J., and Rodriguez-Navarro, A. (1997). The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9, 2281-2289. https://doi.org/10.1105/tpc.9.12.2281
  119. Sarwar, M. (2012). Effects of potassium fertilization on population build up of rice stem borers (lepidopteron pests) and rice (Oryza sativa L.) yield. J. Cereals Oilseeds 3, 6-9.
  120. Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., Hibi, T., Taniguchi, M., Miyake, H., Goto, D.B., et al. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem. J. 424, 439-448. https://doi.org/10.1042/BJ20091221
  121. Schachtman, D.P., and Shin, R. (2007). Nutrient sensing and signaling: NPKS. Annu. Rev. Plant Biol. 58, 47-69. https://doi.org/10.1146/annurev.arplant.58.032806.103750
  122. Schachtman, D.P., Schroeder, J.I., Lucas, W.J., Anderson, J.A., and Gaber, R.F. (1992). Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258, 1654-1658. https://doi.org/10.1126/science.8966547
  123. Schellmann, S., Schnittger, A., Kirik, V., Wada, T., Okada, K., Beermann, A., Thumfahrt, J., Jurgens, G., and Hulskamp, M. (2002). TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J. 21, 5036-5046. https://doi.org/10.1093/emboj/cdf524
  124. Shabala, S., and Cuin, T.A. (2008). Potassium transport and plant salt tolerance. Physiol. Plant. 133, 651-669. https://doi.org/10.1111/j.1399-3054.2007.01008.x
  125. Shabala, S., Demidchik, V., Shabala, L., Cuin, T.A., Smith, S.J., Miller, A.J., Davies, J.M., and Newman, I.A. (2006). Extracellular $Ca^{2+}$ ameliorates NaCl-induced $K^+$ loss from Arabidopsis root and leaf cells by controlling plasma membrane $K^+$ -permeable channels. Plant Physiol. 141, 1653-1665. https://doi.org/10.1104/pp.106.082388
  126. Sheng, X.F., and He, L.Y. (2006). Solubilization of potassiumbearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can. J. Microbiol. 52, 66-72. https://doi.org/10.1139/w05-117
  127. Shi, H., Ye, T., Chen, F., Cheng, Z., Wang, Y., Yang, P., Zhang, Y., and Chan, Z. (2013). Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. J. Exp. Bot. 64, 1367-1379. https://doi.org/10.1093/jxb/ers400
  128. Shin, R. (2011). Transcriptional regulatory components responding to macronutrient limitation. J. Plant Biol. 54, 286-293. https://doi.org/10.1007/s12374-011-9174-7
  129. Shin, R., and Schachtman, D.P. (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc. Natl. Acad. Sci. USA 101, 8827-8832. https://doi.org/10.1073/pnas.0401707101
  130. Shin, R., Berg, R.H., and Schachtman, D.P. (2005). Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 46, 1350-1357. https://doi.org/10.1093/pcp/pci145
  131. Shin, R., Burch, A.Y., Huppert, K.A., Tiwari, S.B., Murphy, A.S., Guilfoyle, T.J., and Schachtman, D.P. (2007). The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19, 2440-2453. https://doi.org/10.1105/tpc.107.050963
  132. Shin, R., Jez, J.M., Basra, A., Zhang, B., and Schachtman, D.P. (2011). 14-3-3 proteins fine-tune plant nutrient metabolism. FEBS Lett. 585, 143-147. https://doi.org/10.1016/j.febslet.2010.11.025
  133. Sokolovski, S., Hills, A., Gay, R.A., and Blatt, M.R. (2008). Functional interaction of the SNARE protein NtSyp121 in $Ca^{2+}$ channel gating, $Ca^{2+}$ transients and ABA signalling of stomatal guard cells. Mol. Plant 1, 347-358. https://doi.org/10.1093/mp/ssm029
  134. Song, Z., Yang, S., Zhu, H., Jin, M., and Su, Y. (2014). Heterologous expression of an alligatorweed high-affinity potassium transporter gene enhances salinity tolerance in Arabidopsis thaliana. Am. J. Bot. 101, 840-850. https://doi.org/10.3732/ajb.1400155
  135. Sottocornola, B., Visconti, S., Orsi, S., Gazzarrini, S., Giacometti, S., Olivari, C., Camoni, L., Aducci, P., Marra, M., Abenavoli, A., et al. (2006). The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. J. Biol. Chem. 281, 35735-35741. https://doi.org/10.1074/jbc.M603361200
  136. Sottocornola, B., Gazzarrini, S., Olivari, C., Romani, G., Valbuzzi, P., Thiel, G., and Moroni, A. (2008). 14-3-3 proteins regulate the potassium channel KAT1 by dual modes. Plant Biol. 10, 231-236. https://doi.org/10.1111/j.1438-8677.2007.00028.x
  137. Spalding, E.P., Hirsch, R.E., Lewis, D.R., Qi, Z., Sussman, M.R., and Lewis, B.D. (1999). Potassium uptake supporting plant growth in the absence of AKT1 channel activity: Inhibition by ammonium and stimulation by sodium. J. Gen. Physiol. 113, 909-918. https://doi.org/10.1085/jgp.113.6.909
  138. Sun, J., Bankston, J.R., Payandeh, J., Hinds, T.R., Zagotta, W.N., and Zheng, N. (2014). Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507, 73-77. https://doi.org/10.1038/nature13074
  139. Sutter, J.U., Campanoni, P., Tyrrell, M., and Blatt, M.R. (2006). Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 $K^+$ channel at the plasma membrane. Plant Cell 18, 935-954. https://doi.org/10.1105/tpc.105.038950
  140. Sutter, J.U., Sieben, C., Hartel, A., Eisenach, C., Thiel, G., and Blatt, M.R. (2007). Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 $K^+$ channel and its recycling to the plasma membrane. Curr. Biol. 17, 1396-1402. https://doi.org/10.1016/j.cub.2007.07.020
  141. Syers, J.K. (1998). Soil and plant potassium in agriculture. York: The Fertilzer Society.
  142. Szczerba, M.W., Britto, D.T., Ali, S.A., Balkos, K.D., and Kronzucker, H.J. (2008). $NH_4^+$-stimulated and -inhibited components of $K^+$ transport in rice (Oryza sativa L.). J. Exp. Bot. 59, 3415-3423. https://doi.org/10.1093/jxb/ern190
  143. Tapken, D., and Hollmann, M. (2008). Arabidopsis thaliana glutamate receptor ion channel function demonstrated by ion pore transplantation. J. Mol. Biol. 383, 36-48. https://doi.org/10.1016/j.jmb.2008.06.076
  144. Tominaga-Wada, R., Iwata, M., Nukumizu, Y., Sano, R., and Wada, T. (2012). A full-length R-like basic-helix-loop-helix transcription factor is required for anthocyanin upregulation whereas the Nterminal region regulates epidermal hair formation. Plant Sci. 183, 115-122. https://doi.org/10.1016/j.plantsci.2011.11.010
  145. Tsay, Y.F., Ho, C.H., Chen, H.Y., and Lin, S.H. (2011). Integration of nitrogen and potassium signaling. Annu. Rev. Plant Biol. 62, 207-226. https://doi.org/10.1146/annurev-arplant-042110-103837
  146. Very, A.A., and Sentenac, H. (2003). Molecular mechanisms and regulation of $K^+$ transport in higher plants. Annu. Rev. Plant Biol. 54, 575-603. https://doi.org/10.1146/annurev.arplant.54.031902.134831
  147. Vicente-Agullo, F., Rigas, S., Desbrosses, G., Dolan, L., Hatzopoulos, P., and Grabov, A. (2004). Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J. 40, 523-535. https://doi.org/10.1111/j.1365-313X.2004.02230.x
  148. Voelker, C., Schmidt, D., Mueller-Roeber, B., and Czempinski, K. (2006). Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J. 48, 296-306. https://doi.org/10.1111/j.1365-313X.2006.02868.x
  149. Wada, T., Kurata, T., Tominaga, R., Koshino-Kimura, Y., Tachibana, T., Goto, K., Marks, M.D., Shimura, Y., and Okada, K. (2002). Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129, 5409-5419. https://doi.org/10.1242/dev.00111
  150. Walker, D.J., Leigh, R.A., and Miller, A.J. (1996). Potassium homeostasis in vacuolate plant cells. Proc. Natl. Acad. Sci. USA 93, 10510-10514. https://doi.org/10.1073/pnas.93.19.10510
  151. Wang, Y., and Wu, W.H. (2010). Plant sensing and signaling in response to $K^+$-deficiency. Mol. Plant 3, 280-287. https://doi.org/10.1093/mp/ssq006
  152. Wang, Y., and Wu, W.H. (2013). Potassium transport and signaling in higher plants. Annu. Rev. Plant Biol. 64, 451-476. https://doi.org/10.1146/annurev-arplant-050312-120153
  153. Wang, J.G., Zhang, F.S., Zhang, X.L., and Cao, Y.P. (2000). Release of potassium from K-bearing minerals:effect of plant roots under P deficiency. Nutr. Cycl. Agroecosyst. 56, 45-52. https://doi.org/10.1023/A:1009894427550
  154. Wang, M., Zheng, Q., Shen, Q., and Guo, S. (2013). The critical role of potassium in plant stress response. Int. J. Mol. Sci. 14, 7370-7390. https://doi.org/10.3390/ijms14047370
  155. White, P.J., Hammond, J.P., King, G.J., Bowen, H.C., Hayden, R.M., Meacham, M.C., Spracklen, W.P., and Broadley, M.R. (2010). Genetic analysis of potassium use efficiency in Brassica oleracea. Ann. Bot. 105, 1199-1210. https://doi.org/10.1093/aob/mcp253
  156. White, P.J., George, T.S., Dupuy, L.X., Karley, A.J., Valentine, T.A., Wiesel, L., and Wishart, J. (2013a). Root traits for infertile soils. Front Plant Sci. 4, 193.
  157. White, P.J., George, T.S., Gregory, P.J., Bengough, A.G., Hallett, P.D., and McKenzie, B.M. (2013b). Matching roots to their environment. Ann. Bot. 112, 207-222. https://doi.org/10.1093/aob/mct123
  158. Williams, J., and Smith, S.G. (2001). Correcting potassium deficiency can reduce rice stem disease. Better crops 85, 7-9.
  159. Xie, Q., Frugis, G., Colgan, D., and Chua, N.H. (2000). Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14, 3024-3036. https://doi.org/10.1101/gad.852200
  160. Xu, W.F., and Shi, W.M. (2006). Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR. Ann. Bot. 98, 965-974. https://doi.org/10.1093/aob/mcl189
  161. Xu, J., Li, H.D., Chen, L.Q., Wang, Y., Liu, L.L., He, L., and Wu, W.H. (2006). A protein kinase, interacting with two calcineurin Blike proteins, regulates $K^+$ transporter AKT1 in Arabidopsis. Cell 125, 1347-1360. https://doi.org/10.1016/j.cell.2006.06.011
  162. Yao, W., Hadjeb, N., and Berkowitz, G.A. (1997). Molecular cloning and characterization of the first plant K(Na)/proton antiporter. Plant Physiol. 114S, 200.
  163. Yong, Z., Kotur, Z., and Glass, A.D. (2010). Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots. Plant J. 63, 739-748. https://doi.org/10.1111/j.1365-313X.2010.04278.x
  164. Zhang, H.M., and Forde, B.G. (1998). An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407-409. https://doi.org/10.1126/science.279.5349.407
  165. Zhao, J., Cheng, N.H., Motes, C.M., Blancaflor, E.B., Moore, M., Gonzales, N., Padmanaban, S., Sze, H., Ward, J.M., and Hirschi, K.D. (2008). AtCHX13 is a plasma membrane $K^+$ transporter. Plant Physiol. 148, 796-807. https://doi.org/10.1104/pp.108.124248
  166. Zhao, F., Guo, X.Q., Wang, P., He, L.Y., Huang, Z., and Sheng, X.F. (2013). Dyella jiangningensis sp. nov., a gamma-proteobac terium isolated from the surface of potassium-bearing rock. Int. J. Syst. Evol. Microbiol. 63, 3154-3157. https://doi.org/10.1099/ijs.0.048470-0

Cited by

  1. Response of root morphology, physiology and endogenous hormones in maize (Zea mays L.) to potassium deficiency vol.15, pp.4, 2016, https://doi.org/10.1016/S2095-3119(15)61246-1
  2. Calcium biofortification and bioaccessibility in soilless “baby leaf” vegetable production vol.213, 2016, https://doi.org/10.1016/j.foodchem.2016.06.071
  3. Whole-plant mineral partitioning during the reproductive development of rice (Oryza sativa L.) vol.15, pp.2, 2017, https://doi.org/10.5424/sjar/2017152-10332
  4. Improving rice tolerance to potassium deficiency by enhancingOsHAK16p:WOX11-controlled root development vol.13, pp.6, 2015, https://doi.org/10.1111/pbi.12320
  5. Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency vol.25, 2015, https://doi.org/10.1016/j.pbi.2015.04.007
  6. Polymorphic responses of Medicago truncatula accessions to potassium deprivation vol.12, pp.4, 2017, https://doi.org/10.1080/15592324.2017.1307494
  7. Responses to K deficiency and waterlogging interact via respiratory and nitrogen metabolism vol.42, pp.2, 2019, https://doi.org/10.1111/pce.13450
  8. Interaction between calcium and potassium modulates elongation rate in cotton fiber cells vol.68, pp.18, 2014, https://doi.org/10.1093/jxb/erx346
  9. A protein phosphatase 2C, AP2C1, interacts with and negatively regulates the function of CIPK9 under potassium-deficient conditions in Arabidopsis vol.69, pp.16, 2014, https://doi.org/10.1093/jxb/ery182
  10. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective vol.10, pp.None, 2019, https://doi.org/10.3389/fpls.2019.00923
  11. World Potassium Use Efficiency in Cereal Crops vol.111, pp.2, 2019, https://doi.org/10.2134/agronj2018.07.0462
  12. Genetic dissection of root morphological traits as related to potassium use efficiency in rapeseed under two contrasting potassium levels by hydroponics vol.62, pp.6, 2019, https://doi.org/10.1007/s11427-018-9503-x
  13. Synthesis of biopolymeric particles loaded with phosphorus and potassium: characterisation and release tests vol.13, pp.5, 2014, https://doi.org/10.1049/iet-nbt.2018.5035
  14. Hydroponic Production of Reduced-Potassium Swiss Chard and Spinach: A Feasible Agronomic Approach to Tailoring Vegetables for Chronic Kidney Disease Patients vol.9, pp.10, 2014, https://doi.org/10.3390/agronomy9100627
  15. A role for the OsHKT 2;1 sodium transporter in potassium use efficiency in rice vol.71, pp.2, 2014, https://doi.org/10.1093/jxb/erz113
  16. Nutrients Accumulation, Biometric, Chlorophyll and Potassium Indexes and Production in Minituber Potato as Function of Potassium Doses in Organic and Hydroponic Conditions vol.51, pp.10, 2014, https://doi.org/10.1080/00103624.2020.1781155
  17. The bacterial potassium transporter gene MbtrkH improves K + uptake in yeast and tobacco vol.15, pp.8, 2020, https://doi.org/10.1371/journal.pone.0236246
  18. Fungal Shaker -like channels beyond cellular K + homeostasis: A role in ectomycorrhizal symbiosis between Hebeloma cylindrosporum and Pinus pinaster vol.15, pp.11, 2014, https://doi.org/10.1371/journal.pone.0242739
  19. Fine mapping and candidate gene analysis of qRN5a, a novel QTL promoting root number in rice under low potassium vol.134, pp.1, 2014, https://doi.org/10.1007/s00122-020-03692-z
  20. Loss of function of the chloroplast membrane K+/H+ antiporters AtKEA1 and AtKEA2 alters the ROS and NO metabolism but promotes drought stress resilience vol.160, pp.None, 2021, https://doi.org/10.1016/j.plaphy.2021.01.010
  21. The isolation of fiber flax (Linum usitatissimum L.) germplazms with high potassium utilization efficiency vol.67, pp.2, 2014, https://doi.org/10.1080/00380768.2021.1882828
  22. Integrated Application of K and Zn as an Avenue to Promote Sugar Beet Yield, Industrial Sugar Quality, and K-Use Efficiency in a Salty Semi-Arid Agro-Ecosystem vol.11, pp.4, 2021, https://doi.org/10.3390/agronomy11040780
  23. Plant low‐K responses are partly due to Ca prevalence and the low‐K biomarker putrescine does not protect from Ca side effects but acts as a metabolic regulator vol.44, pp.5, 2014, https://doi.org/10.1111/pce.14017
  24. Potassium physiology from Archean to Holocene: A higher-plant perspective vol.262, pp.None, 2014, https://doi.org/10.1016/j.jplph.2021.153432
  25. Potassium fertilization for white oat and maize in integrated crop‐livestock system under no‐tillage vol.67, pp.3, 2014, https://doi.org/10.1111/grs.12312
  26. Response of Aloe vera to potassium fertilization in relation to leaf biomass yield, its uptake and requirement, critical concentration and use efficiency vol.44, pp.14, 2014, https://doi.org/10.1080/01904167.2021.1881546
  27. Effect of diversified cropping systems on crop yield, legacy, and budget of potassium in a subtropical Oxisol vol.275, pp.None, 2014, https://doi.org/10.1016/j.fcr.2021.108342
  28. Light regulation of potassium in plants vol.170, pp.None, 2014, https://doi.org/10.1016/j.plaphy.2021.12.019