Browse > Article
http://dx.doi.org/10.4014/jmb.1108.08085

Identification of Mating Type Loci and Development of SCAR Marker Genetically Linked to the B3 Locus in Pleurotus eryngii  

Ryu, Jae-San (Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services)
Kim, Min Keun (Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services)
Ro, Hyeon-Su (Department of Microbiology and Research Institute for Life Science, Gyeongsang National Univesity)
Kang, Young Min (Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services)
Kwon, Jin-Hyeuk (Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services)
Kong, Won-Sik (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Lee, Hyun-Sook (Department of Microbiology and Research Institute for Life Science, Gyeongsang National Univesity)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.9, 2012 , pp. 1177-1184 More about this Journal
Abstract
In order to estimate how diverse the mating types in Pleurotus eryngii from different regions are, pairings between monokaryons derived from inter- and intra-groups were done. Sixteen and 15 alleles were identified at loci A and B from the 12 strains. In the P. eryngii KNR2312, widely used for commercial production, four mating loci, A3, A4, B3, and B4, were determined. Those loci, except A3, were found in 4 strains out of 12 strains. To improve breeding efficiency, especially in mating type determination, RAPD and BSA were performed to screen for a mating type specific marker. The SCAR marker 13-$2_{2100}$ was developed based on the RAPD-derived sequence typing B3 locus. The sequence analysis of 13-$2_{2100}$ revealed that it contained a conserved domain, the STE3 super-family, and consensus sequences like the TATA box and GC box. It seems likely that the SCAR marker region is a part of the pheromone receptor gene.
Keywords
KNR2312; mating type; Pleurotus eryngii; RAPD; SCAR marker;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Anderson, N. A., G. R. Furneir, A. S. Wang, and J. W. Schwandt. 1991. The number and distribution of incompatibility factors in natural populations of Pleurotus ostreatus and Pleurotus sapidus. Can. J. Bot. 69: 2187-2191.   DOI
2 Casselton, L. A. and U. Kues. 1994. Mating type genes in Homobasidiomycetes, pp. 213-229. In: Developmental Biology of Higher Fungi. Cambridge University Press, Cambridge.
3 Eugenio, C. P. and N. A. Anderson. 1968. The genetics and cultivation of Pleurotus ostreatus. Mycologia 60: 627-634.   DOI
4 Giasson, L., C. A. Specht, C. Milgrim, C. P. Novotny, and R. C. Ullrich. 1989. Cloning and comparison of $A{\alpha}$ mating type alleles of the basidiomycete Schizophyllum commune. Mol. Gen. Genet. 218: 72-77.   DOI   ScienceOn
5 Gioia, D. T., D. Sisto, G. L. Rana, and G. Figliuolo. 2005. Genetic structure of the Pleurotus eryngii species-complex. Mycol. Res. 109: 71-80.   DOI   ScienceOn
6 Hagen, D. C., G. McCaffrey, and G. Sprague. 1986. Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: Gene sequence and implications for the structure of the presumed receptor. Proc. Natl. Acad. Sci. USA 83: 1418-1422.   DOI   ScienceOn
7 Halsall, J. R., M. J. Lilner, and L. A. Casselton. 2000. Three subfamilies of pheromone and receptor genes generate multiple B mating specificities in the mushroom Coprinus cinereus. Genetics 154: 1115-1123.
8 Hilber, O. 1982. Die gattung Pleurotus (Fr) Kummer unter besonderer Berucksichtigung des Pleurotus eryngii-Formenkomplexes. Bibl. Mycol. 87: 1-448.
9 James, T. T., S. R. Liou, and R. Vilgalys. 2004. The genetic structure and diversity of the A and B mating type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genet. Biol. 41: 813-825.   DOI   ScienceOn
10 Judelson, H. S., L. J. Spielman, and R. Shattock. 1995. Mapping non-Mendelian segregation of mating type loci in the Oomycete, Phytophthora infestans. Genetics 141: 503-512.
11 Larraya, L. M., M. M. Penas, G. Perez, C. Santos, E. Ritter, A. G. Pisabarro, and L. Ramirez. 1999. Identification of incompatibility alleles and characterization of molecular markers genetically linked to the A incompatibility locus in the white rot fungus Pleurotus ostreatus. Curr. Genet. 34: 486-493.   DOI   ScienceOn
12 Larraya, L. M., G. Perez, I. Iribarren, J. A. Blanco, M. Alfonso, A. G. Pisabarro, and L. Ramirez. 2001. Relationship between monokaryotic growth rate and mating type in the edible basidiomycete Pleurotus ostreatus. Appl. Environ. Microbiol. 67: 3385-3390.   DOI   ScienceOn
13 Lewinsohn, D., E. Nevo, S. P. Wsser, Y. Hadar, and A. Beharav. 2001. Genetic diversity in populations of the Pleurotus erygii complex in Israel. Mycol. Res. 105: 941-951.   DOI
14 Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2: 323-327.   DOI   ScienceOn
15 Raper, J. R. 1966. Genetics of Sexuality in Higher Fungi. Roland Press, New York.
16 Michelmore, R. W., I. Paran, and R. V. Kessel. 1991. Identification of marker linked to disease-resistance genes by bulked segregation analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88: 9828-9832.   DOI   ScienceOn
17 Parag, Y. and Y. Koltin. 1971. The structure of the incompatibility factors of Schizophyllum commune: Constitution of the three classes of B factors. Mol. Gen. Genet. 112: 43-48.   DOI   ScienceOn
18 Paran, I. and R. W. Michelmore. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85: 985-993.
19 Ro, H. S., S. S. Kim, J. S. Ryu, C. O. Jeon, T. S. Lee, and H. S. Lee. 2007. Comparative studies on the diversity of the edible mushroom Pleurotus eryngii: ITS sequence analysis, RAPD fingerprinting, and physiological characteristics. Mycol. Res. 111: 710-715.   DOI   ScienceOn
20 Ryu, J. S., M. K. Kim, J. H. Kwon, S. H. Cho, N. K. Kim, C. W. Lee, et al. 2007. The growth characteristics of Pleurotus eryngii. Korean J. Mycol. 35: 47-53.   DOI   ScienceOn
21 Theochari, I. and A. Nikolaou. 2000. Distribution of the mating type alleles in a Greek population of Pleurotus ostreatus, pp. 157-163. In L. J. L. D. Van Griensven (ed.). Science and Cultivation of Edible Fungi. Balkema, Rotterdam.
22 Urbanelli, S., V. D. Rosa, C. Fanelli, A. A. Fabbri, and M. Reverberi. 2003. Genetic diversity and population structure of the Italian fungi belonging to the taxa Pleurotus eryngii (DC.:Fr) Quel and P. feruae (DC.:Fr.) Quel. Heredity 90: 253-259.   DOI   ScienceOn
23 Zervakis, G. I., G. Venturella, and K. Papadopoulou. 2001. Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Microbiology 147: 3183-3194.   DOI
24 Wallace, M. M. and S. F. Covert. 2000. Molecular mating type assay for Fusarium circinatum. Appl. Environ. Microbiol. 66: 5506-5508.   DOI   ScienceOn
25 William, J. G. K., A .R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.   DOI   ScienceOn
26 Zadrazil, F. 1978. Cultivation of Pleurotus, pp. 521-557. In S. T. Chang and W. A. Hayes (eds.). The Biology and Cultivation of Edible Mushrooms. Academic Press. San Francisco. London.