Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0141

Strategies for Improving Potassium Use Efficiency in Plants  

Shin, Ryoung (RIKEN Center for Sustainable Resource Science)
Abstract
Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci.
Keywords
plant; potassium deficient signaling; potassium uptake efficiency; potassium use efficiency;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ros, R., Lemaillet, G., Fonrouge, A.G., Daram, P., Enjuto, M., Salmon, J.M., Thibaud, J.B., and Sentenac, H. (1999). Molecular determinants of the Arabidopsis AKT1 $K^+$ channel ionic selectivity investigated by expression in yeast of randomly mutated channels. Physiol. Plant. 105, 459-468.   DOI   ScienceOn
2 Roy, S.J., Gilliham, M., Berger, B., Essah, P.A., Cheffings, C., Miller, A.J., Davenport, R.J., Liu, L.H., Skynner, M.J., Davies, J.M., et al. (2008). Investigating glutamate receptor-like gene coexpression in Arabidopsis thaliana. Plant Cell Environ. 31, 861-871.   DOI   ScienceOn
3 Rubio, F., Santa-Maria, G.E., and Rodriguez-Navarro, A. (2000). Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol. Plant. 109, 34-43.   DOI   ScienceOn
4 Santa-Maria, G.E., Rubio, F., Dubcovsky, J., and Rodriguez-Navarro, A. (1997). The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9, 2281-2289.   DOI   ScienceOn
5 Sarwar, M. (2012). Effects of potassium fertilization on population build up of rice stem borers (lepidopteron pests) and rice (Oryza sativa L.) yield. J. Cereals Oilseeds 3, 6-9.
6 Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., Hibi, T., Taniguchi, M., Miyake, H., Goto, D.B., et al. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem. J. 424, 439-448.   DOI
7 Schachtman, D.P., Schroeder, J.I., Lucas, W.J., Anderson, J.A., and Gaber, R.F. (1992). Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258, 1654-1658.   DOI
8 Qi, Z., Hampton, C.R., Shin, R., Barkla, B.J., White, P.J., and Schachtman, D.P. (2008). The high affinity $K^+$ transporter AtHAK5 plays a physiological role in planta at very low $K^+$ concentrations and provides a caesium uptake pathway in Arabidopsis. J. Exp. Bot. 59, 595-607.   DOI   ScienceOn
9 Rajan, S., Preisig-Muller, R., Wischmeyer, E., Nehring, R., Hanley, P.J., Renigunta, V., Musset, B., Schlichthorl, G., Derst, C., Karschin, A., et al. (2002). Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J. Physiol. 545, 13-26.   DOI
10 Ramirez-Silva, L., and Oria-Hernandez, J. (2003). Selectivity of pyruvate kinase for $Na^+$ and $K^+$ in water/dimethylsulfoxide mixtures. Eur. J. Biochem. 270, 2377-2385.   DOI   ScienceOn
11 Ramirez-Silva, L., de Gomez-Puyou, M.T., and Gomez-Puyou, A. (1993). Water-induced transitions in the $K^+$ requirements for the activity of pyruvate kinase entrapped in reverse micelles. Biochemistry 32, 5332-5338.   DOI   ScienceOn
12 Ren, X.L., Qi, G.N., Feng, H.Q., Zhao, S., Zhao, S.S., Wang, Y., and Wu, W.H. (2013). Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates $K^+$ homeostasis in Arabidopsis. Plant J. 74, 258-266.   DOI   ScienceOn
13 Rengel, Z., and Damon, P.M. (2008). Crops and genotypes differ in efficiency of potassium uptake and use. Physiol. Plant. 133, 624-636.   DOI   ScienceOn
14 Rigas, S., Debrosses, G., Haralampidis, K., Vicente-Agullo, F., Feldmann, K.A., Grabov, A., Dolan, L., and Hatzopoulos, P. (2001). TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13, 139-151.   DOI   ScienceOn
15 Padmanaban, S., Chanroj, S., Kwak, J.M., Li, X., Ward, J.M., and Sze, H. (2007). Participation of endomembrane cation/$H^+$ exchanger AtCHX20 in osmoregulation of guard cells. Plant Physiol. 144, 82-93.   DOI   ScienceOn
16 Roberts, M.R. (2003). 14-3-3 proteins find new partners in plant cell signalling. Trends Plant Sci. 8, 218-223.   DOI   ScienceOn
17 Oria-Hernandez, J., Cabrera, N., Perez-Montfort, R., and Ramirez-Silva, L. (2005). Pyruvate kinase revisited: the activating effect of $K^+$. J. Biol. Chem. 280, 37924-37929.   DOI   ScienceOn
18 Oria-Hernandez, J., Riveros-Rosas, H., and Ramirez-Silva, L. (2006). Dichotomic phylogenetic tree of the pyruvate kinase family: $K^+$ -dependent and -independent enzymes. J. Biol. Chem. 281, 30717-30724.   DOI   ScienceOn
19 Pajonk, S., Kwon, C., Clemens, N., Panstruga, R., and Schulze-Lefert, P. (2008). Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J. Biol. Chem. 283, 26974-26984.   DOI   ScienceOn
20 Pettogrew, W.T. (2008). Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 133, 670-681.   DOI   ScienceOn
21 Philippar, K., Ivashikina, N., Ache, P., Christian, M., Luthen, H., Palme, K., and Hedrich, R. (2004). Auxin activates KAT1 and KAT2, two $K^+$-channel genes expressed in seedlings of Arabidopsis thaliana. Plant J. 37, 815-827.   DOI   ScienceOn
22 Pilot, G., Lacombe, B., Gaymard, F., Cherel, I., Boucherez, J., Thibaud, J.B., and Sentenac, H. (2001). Guard cell inward $K^+$ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J. Biol. Chem. 276, 3215-3221.   DOI   ScienceOn
23 Montiel, G., Gantet, P., Jay-Allemand, C., and Breton, C. (2004). Transcription factor networks. Pathways to the knowledge of root development. Plant Physiol. 136, 3478-3485.   DOI   ScienceOn
24 Qi, Z., and Spalding, E.P. (2004). Protection of plasma membrane $K^+$ transport by the salt overly sensitive1 $Na^+$-$H^+$ antiporter during salinity stress. Plant Physiol. 136, 2548-2555.   DOI   ScienceOn
25 Martin, T., Frommer, W.B., Salanoubat, M., and Willmitzer, L. (1993). Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J. 4, 367-377.   DOI   ScienceOn
26 Maser, P., Thomine, S., Schroeder, J.I., Ward, J.M., Hirschi, K., Sze, H., Talke, I.N., Amtmann, A., Maathuis, F.J.M., Sanders, D., et al. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126, 1646-1667.   DOI   ScienceOn
27 Morcuende, R., Bari, R., Gibon, Y., Zheng, W., Pant, B.D., Blasing, O., Usadel, B., Czechowski, T., Udvardi, M.K., Stitt, M., et al. (2007). Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ. 30, 85-112.   DOI   ScienceOn
28 Mottaleb, S.A., Rodriguez-Navarro, A., and Haro, R. (2013). Knockouts of Physcomitrella patens CHX1 and CHX2 transporters reveal high complexity of potassium homeostasis. Plant Cell Physiol. 54, 1455-1468.   DOI   ScienceOn
29 Nam, Y.J., Tran, L.S., Kojima, M., Sakakibara, H., Nishiyama, R., and Shin, R. (2012). Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis. PLoS One 7, e47797.   DOI
30 Nieves-Cordones, M., Aleman, F., Martinez, V., and Rubio, F. (2010). The Arabidopsis thaliana HAK5 $K^+$ transporter is required for plant growth and $K^+$ acquisition from low $K^+$ solutions under saline conditions. Mol. Plant 3, 326-333.   DOI   ScienceOn
31 Oecking, C., and Jaspert, N. (2009). Plant 14-3-3 proteins catch up with their mammalian orthologs. Curr. Opin. Plant Biol. 12, 760-765.   DOI   ScienceOn
32 Leyman, B., Geelen, D., Quintero, F.J., and Blatt, M.R. (1999). A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283, 537-540.   DOI   ScienceOn
33 Liesche, J., Schulz, A., Krugel, U., Grimm, B., and Kuhn, C. (2008). Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements. Plant Signal. Behav. 3, 1136-1137.   DOI
34 Liu, K., Li, L., and Luan, S. (2006). Intracellular $K^+$ sensing of SKOR, a Shaker-type $K^+$ channel from Arabidopsis. Plant J. 46, 260-268.   DOI   ScienceOn
35 Liu, H., Tang, R., Zhang, Y., Wang, C., Lv, Q., Gao, X., Li, W., and Zhang, H. (2010). AtNHX3 is a vacuolar $K^+$/$H^+$ antiporter required for low-potassium tolerance in Arabidopsis thaliana. Plant Cell Environ. 33, 1989-1999.   DOI   ScienceOn
36 Liu, L.L., Ren, H.M., Chen, L.Q., Wang, Y., and Wu, W.H. (2013). A protein kinase, calcineurin B-like protein-interacting protein kinase9, interacts with calcium sensor calcineurin B-like protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis. Plant Physiol. 161, 266-277.   DOI
37 Maathuis, F.J., and Sanders, D. (1992). Plant membrane transport. Curr. Opin. Cell Biol. 4, 661-669.   DOI   ScienceOn
38 Lu, Y.X., Chanroj, S., Zulkifli, L., Johnson, M.A., Uozumi, N., Cheung, A., and Sze, H. (2011). Pollen tubes lacking a pair of $K^+$ transporters fail to target ovules in Arabidopsis. Plant Cell 23, 81-93.   DOI   ScienceOn
39 Luan, S., Lan, W., and Lee, S.C. (2009). Potassium nutrition, sodium toxicity, and calcium signaling:connections through the CBL-CIPK network. Curr. Opin. Plant Biol. 12, 339-346.   DOI   ScienceOn
40 Ma, W., Ali, R., and Berkowitz, G.A. (2006). Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol. Biochem. 44, 494-505.   DOI   ScienceOn
41 Lacombe, B., Becker, D., Hedrich, R., DeSalle, R., Hollmann, M., Kwak, J.M., Schroeder, J.I., Le Novere, N., Nam, H.G., Spalding, E.P., et al. (2001). The identity of plant glutamate receptors. Science 292, 1486-1487.
42 Lan, W.Z., Lee, S.C., Che, Y.F., Jiang, Y.Q., and Luan, S. (2011). Mechanistic analysis of AKT1 regulation by the CBL-CIPKPP2CA interactions. Mol. Plant 4, 527-536.   DOI   ScienceOn
43 Latz, A., Becker, D., Hekman, M., Muller, T., Beyhl, D., Marten, I., Eing, C., Fischer, A., Dunkel, M., Bertl, A., et al. (2007). TPK1, a $Ca^{2+}$-regulated Arabidopsis vacuole two-pore $K^+$ channel is activated by 14-3-3 proteins. Plant J. 52, 449-459.   DOI   ScienceOn
44 Lebaudy, A., Pascaud, F., Very, A.A., Alcon, C., Dreyer, I., Thibaud, J.B., and Lacombe, B. (2010). Preferential KAT1-KAT2 heteromerization determines inward $K^+$ current properties in Arabidopsis guard cells. J. Biol. Chem. 285, 6265-6274.   DOI   ScienceOn
45 Leung, Y.M., Kwan, E.P., Ng, B., Kang, Y., and Gaisano, H.Y. (2007). SNAREing voltage-gated $K^+$ and ATP-sensitive $K^+$ channels: tuning beta-cell excitability with syntaxin-1A and other exocytotic proteins. Endocr. Rev. 28, 653-663.   DOI   ScienceOn
46 Leigh, R.A., and Wyn Jones, R.G. (1984). A hypothesis relating critical potassium concentrations for growth to the distribution and function of this ion in the plant cell. New Phytol. 97, 1-13.   DOI   ScienceOn
47 Leng, Q., Mercier, R.W., Yao, W., and Berkowitz, G.A. (1999). Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol. 121, 753-761.   DOI
48 Leng, Q., Mercier, R.W., Hua, B.G., Fromm, H., and Berkowitz, G.A. (2002). Electrophysiological analysis of cloned cyclic nucleotidegated ion channels. Plant Physiol. 128, 400-410.   DOI   ScienceOn
49 Hwang, H., Yoon, J., Kim, H.Y., Min, M.K., Kim, J.A., Choi, E.H., Lan, W., Bae, Y.M., Luan, S., Cho, H., et al. (2013a). Unique features of two potassium channels, OsKAT2 and OsKAT3, expressed in rice guard cells. PLoS One 8, e72541.   DOI
50 Hwang, H., Yoon, J.Y., Cho, H., and Kim, B.G. (2013b). OsKAT2 is the prevailing functional inward rectifier potassium channels in rice guard cell. Plant Signal. Behav. 8, e26643.   DOI
51 Ivashikina, N., Becker, D., Ache, P., Meyerhoff, O., Felle, H.H., and Hedrich, R. (2001). $K^+$ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett. 508, 463-469.   DOI   ScienceOn
52 Ivashikina, N., Deeken, R., Fischer, S., Ache, P., and Hedrich, R. (2005). AKT2/3 subunits render guard cell $K^+$ channels $Ca^{2+}$ sensitive. J. Gen. Physiol. 125, 483-492.   DOI   ScienceOn
53 Kim, M.J., Ruzicka, D., Shin, R., and Schachtman, D.P. (2012). The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol. Plant 5, 1042-1057.   DOI   ScienceOn
54 Jung, J.Y., Shin, R., and Schachtman, D.P. (2009). Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 21, 607-621.   DOI   ScienceOn
55 Kim, M.J., Shin, R., and Schachtman, D.P. (2009). A nuclear factor regulates abscisic acid responses in Arabidopsis. Plant Physiol. 151, 1433-1445.   DOI   ScienceOn
56 Kim, M.J., Ciani, S., and Schachtman, D.P. (2010). A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol. Plant 3, 420-427.   DOI   ScienceOn
57 Kirik, V., Simon, M., Huelskamp, M., and Schiefelbein, J. (2004). The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev. Biol. 268, 506-513.   DOI   ScienceOn
58 Held, K., Pascaud, F., Eckert, C., Gajdanowicz, P., Hashimoto, K., Corratge-Faillie, C., Offenborn, J.N., Lacombe, B., Dreyer, I., Thibaud, J.B., et al. (2011). Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res. 21, 1116-1130.   DOI   ScienceOn
59 Hirsch, R.E., Lewis, B.D., Spalding, E.P., and Sussman, M.R. (1998). A role for the AKT1 potassium channel in plant nutrition. Science 280, 918-921.   DOI   ScienceOn
60 Ho, C.H., Lin, S.H., Hu, H.C., and Tsay, Y.F. (2009). CHL1 functions as a nitrate sensor in plants. Cell 138, 1184-1194.   DOI   ScienceOn
61 Honsbein, A., Sokolovski, S., Grefen, C., Campanoni, P., Pratelli, R., Paneque, M., Chen, Z., Johansson, I., and Blatt, M.R. (2009). A tripartite SNARE-$K^+$ channel complex mediates in channeldependent $K^+$ nutrition in Arabidopsis. Plant Cell 21, 2859-2877.   DOI   ScienceOn
62 Hogh-Jensen, H., and Pedersen, M.B. (2003). Morphological plasticity by crop plants and their potassium use efficiency. J. Plant Nutr. 26, 969-984.   DOI   ScienceOn
63 Holzmueller, E.J., Jose, S., and Jenkins, M.A. (2007). Influence of calcium, potassium, and magnesium on Cornus florida L. density and resistance to dogwood anthracnose. Plant Soil 290, 189-199.   DOI
64 Hong, J.P., Takeshi, Y., Kondou, Y., Schachtman, D.P., Matsui, M., and Shin, R. (2013). Identification and characterization of transcription factors regulating Arabidopsis HAK5. Plant Cell Physiol. 54, 1478-1490.   DOI   ScienceOn
65 Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S., and Shinmyo, A. (2001). Two types of HKT transporters with different properties of $Na^+$ and $K^+$ transport in Oryza sativa. Plant J. 27, 129-138.   DOI   ScienceOn
66 Gattward, J.N., Almeida, A.A., Souza, J.O., Jr., Gomes, F.P., and Kronzucker, H.J. (2012). Sodium-potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition. Physiol. Plant. 146, 350-362.   DOI   ScienceOn
67 Gaxiola, R.A., Rao, R., Sherman, A., Grisafi, P., Alper, S.L., and Fink, G.R. (1999). The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA 96, 1480-1485.   DOI   ScienceOn
68 Grabov, A. (2007). Plant KT/KUP/HAK potassium transporters: single family - multiple functions. Ann. Bot. 99, 1035-1041.   DOI   ScienceOn
69 Geiger, D., Becker, D., Vosloh, D., Gambale, F., Palme, K., Rehers, M., Anschuetz, U., Dreyer, I., Kudla, J., and Hedrich, R. (2009). Heteromeric AtKC1.AKT1 channels in Arabidopsis roots facilitate growth under $K^+$-limiting conditions. J. Biol. Chem. 284, 21288-21295.   DOI   ScienceOn
70 Gierth, M., Maser, P., and Schroeder, J.I. (2005). The potassium transporter AtHAK5 functions in $K^+$ deprivation-induced highaffinity $K^+$ uptake and AKT1 $K^+$ channel contribution to $K^+$ uptake kinetics in Arabidopsis roots. Plant Physiol. 137, 1105-1114.   DOI   ScienceOn
71 Guerrero-Mendiola, C., Oria-Hernandez, J., and Ramirez-Silva, L. (2009). Kinetics of the thermal inactivation and aggregate formation of rabbit muscle pyruvate kinase in the presence of trehalose. Arch. Biochem. Biophys. 490, 129-136.   DOI   ScienceOn
72 Hao, J., Tu, L., Hu, H., Tan, J., Deng, F., Tang, W., Nie, Y., and Zhang, X. (2012). GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J. Exp. Bot. 63, 6267-6281.   DOI
73 Hastings, D.F., and Gutknecht, J. (1978). Potassium and turgor pressure in plants. J. Theor. Biol. 73, 363-366.   DOI
74 Deeken, R., Geiger, D., Fromm, J., Koroleva, O., Ache, P., Langenfeld-Heyser, R., Sauer, N., May, S.T., and Hedrich, R. (2002). Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216, 334-344.   DOI
75 Zhao, F., Guo, X.Q., Wang, P., He, L.Y., Huang, Z., and Sheng, X.F. (2013). Dyella jiangningensis sp. nov., a gamma-proteobac terium isolated from the surface of potassium-bearing rock. Int. J. Syst. Evol. Microbiol. 63, 3154-3157.   DOI   ScienceOn
76 Yao, W., Hadjeb, N., and Berkowitz, G.A. (1997). Molecular cloning and characterization of the first plant K(Na)/proton antiporter. Plant Physiol. 114S, 200.
77 Zhang, H.M., and Forde, B.G. (1998). An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407-409.   DOI   ScienceOn
78 Zhao, J., Cheng, N.H., Motes, C.M., Blancaflor, E.B., Moore, M., Gonzales, N., Padmanaban, S., Sze, H., Ward, J.M., and Hirschi, K.D. (2008). AtCHX13 is a plasma membrane $K^+$ transporter. Plant Physiol. 148, 796-807.   DOI   ScienceOn
79 Desbrosses, G., Josefsson, C., Rigas, S., Hatzopoulos, P., and Dolan, L. (2003). AKT1 and TRH1 are required during root hair elongation in Arabidopsis. J. Exp. Bot. 54, 781-788.   DOI   ScienceOn
80 Deeken, R., Ivashikina, N., Czirjak, T., Philippar, K., Becker, D., Ache, P., and Hedrich, R. (2003). Tumour development in Arabidopsis thaliana involves the Shaker-like $K^+$ channels AKT1 and AKT2/3. Plant J. 34, 778-787.   DOI   ScienceOn
81 Duby, G., Hosy, E., Fizames, C., Alcon, C., Costa, A., Sentenac, H., and Thibaud, J.B. (2008). AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant $K^+$ channels. Plant J. 53, 115-123.   DOI   ScienceOn
82 Epstein, E., Rains, D.W., and Elzam, O.E. (1963). Resolution of dual mechanisms of potassium absorption by barley roots. Proc. Natl. Acad. Sci. USA 49, 684-692.   DOI   ScienceOn
83 Food and Agriculture Organization of the United Nations (2006). Fertilizer use by crop. FAO publications, Rome, Italy.
84 Frietsch, S., Wang, Y.F., Sladek, C., Poulsen, L.R., Romanowsky, S.M., Schroeder, J.I., and Harper, J.F. (2007). A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc. Natl. Acad. Sci. USA 104, 14531-14536.   DOI   ScienceOn
85 Fu, H.H., and Luan, S. (1998). AtKuP1: a dual-affinity $K^+$ transporter from Arabidopsis. Plant Cell 10, 63-73.
86 Garciadeblas, B., Senn, M.E., Banuelos, M.A., and Rodriguez-Navarro, A. (2003). Sodium transport and HKT transporters: the rice model. Plant J. 34, 788-801.   DOI   ScienceOn
87 Wang, M., Zheng, Q., Shen, Q., and Guo, S. (2013). The critical role of potassium in plant stress response. Int. J. Mol. Sci. 14, 7370-7390.   DOI   ScienceOn
88 Wang, Y., and Wu, W.H. (2010). Plant sensing and signaling in response to $K^+$-deficiency. Mol. Plant 3, 280-287.   DOI   ScienceOn
89 Wang, Y., and Wu, W.H. (2013). Potassium transport and signaling in higher plants. Annu. Rev. Plant Biol. 64, 451-476.   DOI   ScienceOn
90 Wang, J.G., Zhang, F.S., Zhang, X.L., and Cao, Y.P. (2000). Release of potassium from K-bearing minerals:effect of plant roots under P deficiency. Nutr. Cycl. Agroecosyst. 56, 45-52.   DOI   ScienceOn
91 White, P.J., Hammond, J.P., King, G.J., Bowen, H.C., Hayden, R.M., Meacham, M.C., Spracklen, W.P., and Broadley, M.R. (2010). Genetic analysis of potassium use efficiency in Brassica oleracea. Ann. Bot. 105, 1199-1210.   DOI   ScienceOn
92 White, P.J., George, T.S., Gregory, P.J., Bengough, A.G., Hallett, P.D., and McKenzie, B.M. (2013b). Matching roots to their environment. Ann. Bot. 112, 207-222.   DOI   ScienceOn
93 Czempinski, K., Frachisse, J.M., Maurel, C., Barbier-Brygoo, H., and Mueller-Roeber, B. (2002). Vacuolar membrane localization of the Arabidopsis ‘two-pore' $K^+$ channel KCO1. Plant J. 29, 809-820.   DOI   ScienceOn
94 Cherel, I., Michard, E., Platet, N., Mouline, K., Alcon, C., Sentenac, H., and Thibaud, J.B. (2002). Physical and functional interaction of the Arabidopsis $K^+$ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14, 1133-1146.   DOI
95 Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C., et al. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973-977.   DOI   ScienceOn
96 Czempinski, K., Zimmermann, S., Ehrhardt, T., and Muller-Rober, B. (1997). New structure and function in plant $K^+$ channels: KCO1, an outward rectifier with a steep $Ca^{2+}$ dependency. EMBO J. 16, 2565-2575.   DOI   ScienceOn
97 Corratge-Faillie, C., Jabnoune, M., Zimmermann, S., Very, A.A., Fizames, C., and Sentenac, H. (2010). Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell. Mol. Life Sci. 67, 2511-2532.   DOI
98 Damas, J.M., Oliveira, A.S., Baptista, A.M., and Soares, C.M. (2011). Structural consequences of ATP hydrolysis on the ABC transporter NBD dimer: molecular dynamics studies of HlyB. Protein Sci. 20, 1220-1230.   DOI   ScienceOn
99 Daram, P., Urbach, S., Gaymard, F., Sentenac, H., and Cherel, I. (1997). Tetramerization of the AKT1 plant potassium channel involves its C-terminal cytoplasmic domain. EMBO J. 16, 3455-3463.   DOI   ScienceOn
100 Williams, J., and Smith, S.G. (2001). Correcting potassium deficiency can reduce rice stem disease. Better crops 85, 7-9.
101 Xie, Q., Frugis, G., Colgan, D., and Chua, N.H. (2000). Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14, 3024-3036.   DOI   ScienceOn
102 Xu, W.F., and Shi, W.M. (2006). Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR. Ann. Bot. 98, 965-974.   DOI   ScienceOn
103 Xu, J., Li, H.D., Chen, L.Q., Wang, Y., Liu, L.L., He, L., and Wu, W.H. (2006). A protein kinase, interacting with two calcineurin Blike proteins, regulates $K^+$ transporter AKT1 in Arabidopsis. Cell 125, 1347-1360.   DOI   ScienceOn
104 Szczerba, M.W., Britto, D.T., Ali, S.A., Balkos, K.D., and Kronzucker, H.J. (2008). $NH_4^+$-stimulated and -inhibited components of $K^+$ transport in rice (Oryza sativa L.). J. Exp. Bot. 59, 3415-3423.   DOI   ScienceOn
105 Tapken, D., and Hollmann, M. (2008). Arabidopsis thaliana glutamate receptor ion channel function demonstrated by ion pore transplantation. J. Mol. Biol. 383, 36-48.   DOI   ScienceOn
106 Tominaga-Wada, R., Iwata, M., Nukumizu, Y., Sano, R., and Wada, T. (2012). A full-length R-like basic-helix-loop-helix transcription factor is required for anthocyanin upregulation whereas the Nterminal region regulates epidermal hair formation. Plant Sci. 183, 115-122.   DOI   ScienceOn
107 Tsay, Y.F., Ho, C.H., Chen, H.Y., and Lin, S.H. (2011). Integration of nitrogen and potassium signaling. Annu. Rev. Plant Biol. 62, 207-226.   DOI   ScienceOn
108 Bassil, E., Coku, A., and Blumwald, E. (2012). Cellular ion homeostasis: emerging roles of intracellular NHX $Na^+$/$H^+$ antiporters in plant growth and development. J. Exp. Bot. 63, 5727-5740.   DOI   ScienceOn
109 Dean, G., Casson, S., and Lindsey, K. (2004). KNAT6 gene of Arabidopsis is expressed in roots and is required for correct lateral root formation. Plant Mol. Biol. 54, 71-84.   DOI
110 Banuelos, M.A., Garciadeblas, B., Cubero, B., and Rodriguez-Navarro, A. (2002). Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol. 130, 784-795.   DOI   ScienceOn
111 Becker, D., Hoth, S., Ache, P., Wenkel, S., Roelfsema, M.R., Meyerhoff, O., Hartung, W., and Hedrich, R. (2003). Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett. 554, 119-126.   DOI   ScienceOn
112 Berthomieu, P., Conejero, G., Nublat, A., Brackenbury, W.J., Lambert, C., Savio, C., Uozumi, N., Oiki, S., Yamada, K., Cellier, F., et al. (2003). Functional analysis of AtHKT1 in Arabidopsis shows that $Na^+$ recirculation by the phloem is crucial for salt tolerance. EMBO J. 22, 2004-2014.   DOI   ScienceOn
113 Britto, D.T., and Kronzucker, H.J. (2008). Cellular mechanisms of potassium transport in plants. Physiol. Plant. 133, 637-650.   DOI   ScienceOn
114 Brown, L.K., George, T.S., Dupuy, L.X., and White, P.J. (2013). A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? Ann. Bot. 112, 317-330.   DOI   ScienceOn
115 Wada, T., Kurata, T., Tominaga, R., Koshino-Kimura, Y., Tachibana, T., Goto, K., Marks, M.D., Shimura, Y., and Okada, K. (2002). Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129, 5409-5419.   DOI   ScienceOn
116 Very, A.A., and Sentenac, H. (2003). Molecular mechanisms and regulation of $K^+$ transport in higher plants. Annu. Rev. Plant Biol. 54, 575-603.   DOI   ScienceOn
117 Vicente-Agullo, F., Rigas, S., Desbrosses, G., Dolan, L., Hatzopoulos, P., and Grabov, A. (2004). Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J. 40, 523-535.   DOI   ScienceOn
118 Voelker, C., Schmidt, D., Mueller-Roeber, B., and Czempinski, K. (2006). Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J. 48, 296-306.   DOI   ScienceOn
119 Walker, D.J., Leigh, R.A., and Miller, A.J. (1996). Potassium homeostasis in vacuolate plant cells. Proc. Natl. Acad. Sci. USA 93, 10510-10514.   DOI   ScienceOn
120 Shin, R., Jez, J.M., Basra, A., Zhang, B., and Schachtman, D.P. (2011). 14-3-3 proteins fine-tune plant nutrient metabolism. FEBS Lett. 585, 143-147.   DOI   ScienceOn
121 Sokolovski, S., Hills, A., Gay, R.A., and Blatt, M.R. (2008). Functional interaction of the SNARE protein NtSyp121 in $Ca^{2+}$ channel gating, $Ca^{2+}$ transients and ABA signalling of stomatal guard cells. Mol. Plant 1, 347-358.   DOI   ScienceOn
122 Song, Z., Yang, S., Zhu, H., Jin, M., and Su, Y. (2014). Heterologous expression of an alligatorweed high-affinity potassium transporter gene enhances salinity tolerance in Arabidopsis thaliana. Am. J. Bot. 101, 840-850.   DOI   ScienceOn
123 Ahn, S.J., Shin, R., and Schachtman, D.P. (2004). Expression of KT/KUP genes in Arabidopsis and the role of root hairs in $K^+$ uptake. Plant Physiol. 134, 1135-1145.   DOI   ScienceOn
124 Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 168, 521-530.   DOI   ScienceOn
125 Cellier, F., Conejero, G., Ricaud, L., Luu, D.T., Lepetit, M., Gosti, F., and Casse, F. (2004). Characterization of AtCHX17, a member of the cation/$H^+$ exchangers, CHX family, from Arabidopsis thaliana suggests a role in $K^+$ homeostasis. Plant J. 39, 834-846.   DOI   ScienceOn
126 Adams, E., Diaz, C., Matsui, M., and Shin, R. (2014). Overexpression of a novel component induces HAK5 and enhances growth in Arabidopsis. ISRN Bot. 2014, Article ID 490252.
127 Amtmann, A., and Armengaud, P. (2007). The role of calcium sensor-interacting protein kinases in plant adaptation to potassiumdeficiency: new answers to old questions. Cell Res. 17, 483-485.   DOI   ScienceOn
128 Amtmann, A., and Armengaud, P. (2009). Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr. Opin. Plant Biol. 12, 275-283.   DOI   ScienceOn
129 Amtmann, A., and Blatt, M.R. (2009). Regulation of macronutrient transport. New Phytol. 181, 35-52.   DOI   ScienceOn
130 Amtmann, A., Hammond, J.P., Armengaud, P., and White, P.J. (2006). Nutrient sensing and signalling in plants: Potassium and phosphorus. Adv. Bot. Res. 43, 209-257.
131 Sutter, J.U., Campanoni, P., Tyrrell, M., and Blatt, M.R. (2006). Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 $K^+$ channel at the plasma membrane. Plant Cell 18, 935-954.   DOI   ScienceOn
132 Sottocornola, B., Visconti, S., Orsi, S., Gazzarrini, S., Giacometti, S., Olivari, C., Camoni, L., Aducci, P., Marra, M., Abenavoli, A., et al. (2006). The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. J. Biol. Chem. 281, 35735-35741.   DOI   ScienceOn
133 Sottocornola, B., Gazzarrini, S., Olivari, C., Romani, G., Valbuzzi, P., Thiel, G., and Moroni, A. (2008). 14-3-3 proteins regulate the potassium channel KAT1 by dual modes. Plant Biol. 10, 231-236.   DOI   ScienceOn
134 Spalding, E.P., Hirsch, R.E., Lewis, D.R., Qi, Z., Sussman, M.R., and Lewis, B.D. (1999). Potassium uptake supporting plant growth in the absence of AKT1 channel activity: Inhibition by ammonium and stimulation by sodium. J. Gen. Physiol. 113, 909-918.   DOI
135 Sutter, J.U., Sieben, C., Hartel, A., Eisenach, C., Thiel, G., and Blatt, M.R. (2007). Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 $K^+$ channel and its recycling to the plasma membrane. Curr. Biol. 17, 1396-1402.   DOI   ScienceOn
136 Schellmann, S., Schnittger, A., Kirik, V., Wada, T., Okada, K., Beermann, A., Thumfahrt, J., Jurgens, G., and Hulskamp, M. (2002). TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J. 21, 5036-5046.   DOI   ScienceOn
137 Shabala, S., and Cuin, T.A. (2008). Potassium transport and plant salt tolerance. Physiol. Plant. 133, 651-669.   DOI   ScienceOn
138 Ashley, M.K., Grant, M., and Grabov, A. (2006). Plant responses to potassium deficiencies: a role for potassium transport proteins. J. Exp. Bot. 57, 425-436.
139 Aranda-Sicilia, M.N., Cagnac, O., Chanroj, S., Sze, H., Rodriguez-Rosales, M.P., and Venema, K. (2012). Arabidopsis KEA2, a homolog of bacterial KefC, encodes a $K^+$/$H^+$ antiporter with a chloroplast transit peptide. Biochim. Biophys. Acta 1818, 2362-2371.   DOI   ScienceOn
140 Armengaud, P., Breitling, R., and Amtmann, A. (2010). Coronatineinsensitive 1 (COI1) mediates transcriptional responses of Arabidopsis thaliana to external potassium supply. Mol. Plant 3, 390-405.   DOI   ScienceOn
141 Shin, R., and Schachtman, D.P. (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc. Natl. Acad. Sci. USA 101, 8827-8832.   DOI   ScienceOn
142 Shabala, S., Demidchik, V., Shabala, L., Cuin, T.A., Smith, S.J., Miller, A.J., Davies, J.M., and Newman, I.A. (2006). Extracellular $Ca^{2+}$ ameliorates NaCl-induced $K^+$ loss from Arabidopsis root and leaf cells by controlling plasma membrane $K^+$ -permeable channels. Plant Physiol. 141, 1653-1665.   DOI   ScienceOn
143 Shi, H., Ye, T., Chen, F., Cheng, Z., Wang, Y., Yang, P., Zhang, Y., and Chan, Z. (2013). Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. J. Exp. Bot. 64, 1367-1379.   DOI   ScienceOn
144 Shin, R. (2011). Transcriptional regulatory components responding to macronutrient limitation. J. Plant Biol. 54, 286-293.   DOI   ScienceOn
145 Shin, R., Berg, R.H., and Schachtman, D.P. (2005). Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 46, 1350-1357.   DOI   ScienceOn
146 Shin, R., Burch, A.Y., Huppert, K.A., Tiwari, S.B., Murphy, A.S., Guilfoyle, T.J., and Schachtman, D.P. (2007). The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19, 2440-2453.   DOI   ScienceOn
147 Rodriguez-Rosales, M.P., Galvez, F.J., Huertas, R., Aranda, M.N., Baghour, M., Cagnac, O., and Venema, K. (2009). Plant NHX cation/proton antiporters. Plant Signal. Behav. 4, 265-276.   DOI   ScienceOn
148 Adams, E., and Shin, R. (2014). Transport, signaling, and homeostasis of potassium and sodium in plants. J. Integr. Plant Biol. 56, 231-249.   DOI   ScienceOn
149 Ache, P., Becker, D., Ivashikina, N., Dietrich, P., Roelfsema, M.R., and Hedrich, R. (2000). GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a $K^+$-selective, $K^+$-sensing ion channel. FEBS Lett. 486, 93-98.   DOI   ScienceOn
150 Ache, P., Becker, D., Deeken, R., Dreyer, I., Weber, H., Fromm, J., and Hedrich, R. (2001). VFK1, a Vicia faba $K^+$ channel involved in phloem unloading. Plant J. 27, 571-580.   DOI   ScienceOn
151 Armengaud, P., Breitling, R., and Amtmann, A. (2004). The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 136, 2556-2576.   DOI   ScienceOn
152 Syers, J.K. (1998). Soil and plant potassium in agriculture. York: The Fertilzer Society.
153 Yong, Z., Kotur, Z., and Glass, A.D. (2010). Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots. Plant J. 63, 739-748.   DOI   ScienceOn
154 Sheng, X.F., and He, L.Y. (2006). Solubilization of potassiumbearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can. J. Microbiol. 52, 66-72.   DOI   ScienceOn
155 Kudla, J., Xu, Q., Harter, K., Gruissem, W., and Luan, S. (1999). Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc. Natl. Acad. Sci. USA 96, 4718-4723.   DOI   ScienceOn
156 Demidchik, V., Davenport, R.J., and Tester, M. (2002). Nonselective cation channels in plants. Annu. Rev. Plant Biol. 53, 67-107.   DOI
157 Ramirez-Silva, L., Ferreira, S.T., Nowak, T., Tuena de Gomez-Puyou, M., and Gomez-Puyou, A. (2001). Dimethylsulfoxide promotes $K^+$-independent activity of pyruvate kinase and the acquisition of the active catalytic conformation. Eur. J. Biochem. 268, 3267-3274.   DOI   ScienceOn
158 White, P.J., George, T.S., Dupuy, L.X., Karley, A.J., Valentine, T.A., Wiesel, L., and Wishart, J. (2013a). Root traits for infertile soils. Front Plant Sci. 4, 193.
159 Sun, J., Bankston, J.R., Payandeh, J., Hinds, T.R., Zagotta, W.N., and Zheng, N. (2014). Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507, 73-77.   DOI   ScienceOn
160 Schachtman, D.P., and Shin, R. (2007). Nutrient sensing and signaling: NPKS. Annu. Rev. Plant Biol. 58, 47-69.   DOI   ScienceOn
161 Philippar, K., Buchsenschutz, K., Edwards, D., Loffler, J., Luthen, H., Kranz, E., Edwards, K.J., and Hedrich, R. (2006). The auxininduced $K^+$ channel gene Zmk1 in maize functions in coleoptile growth and is required for embryo development. Plant Mol. Biol. 61, 757-768.   DOI
162 Maser, P., Hosoo, Y., Goshima, S., Horie, T., Eckelman, B., Yamada, K., Yoshida, K., Bakker, E.P., Shinmyo, A., Oiki, S., et al. (2002). Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc. Natl. Acad. Sci. USA 99, 6428-6433.   DOI   ScienceOn
163 Jeanguenin, L., Alcon, C., Duby, G., Boeglin, M., Cherel, I., Gaillard, I., Zimmermann, S., Sentenac, H., and Very, A.A. (2011). AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity. Plant J. 67, 570-582.   DOI   ScienceOn
164 Chao, D.Y., Dilkes, B., Luo, H., Douglas, A., Yakubova, E., Lahner, B., and Salt, D.E. (2013). Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341, 658-659.   DOI   ScienceOn
165 Horie, T., Costa, A., Kim, T.H., Han, M.J., Horie, R., Leung, H.Y., Miyao, A., Hirochika, H., An, G., and Schroeder, J.I. (2007). Rice OsHKT2;1 transporter mediates large $Na^+$ influx component into $K^+$-starved roots for growth. EMBO J. 26, 3003-3014.   DOI   ScienceOn
166 Davenport, R.J., Munoz-Mayor, A., Jha, D., Essah, P.A., Rus, A., and Tester, M. (2007). The $Na^+$ transporter AtHKT1;1 controls retrieval of $Na^+$ from the xylem in Arabidopsis. Plant Cell Environ. 30, 497-507.   DOI   ScienceOn