• 제목/요약/키워드: Marine green alga

검색결과 63건 처리시간 0.025초

Influence of Organic Carbon Sources on Growth and Lipid Content of Marine Green Alga Dunaliella tertiolecta

  • Rizwan, Muhammad;Mujtaba, Ghulam;Lee, Kisay
    • 한국해양바이오학회지
    • /
    • 제6권2호
    • /
    • pp.68-75
    • /
    • 2014
  • This study investigated the potential use of various organic carbon sources (glucose, glycerol and acetate) and different concentrations of $CO_2$ for culturing marine microalga Dunaliella tertiolecta. Cell growth and lipid production were monitored under heterotrophic, mixotrophic and photoautotrophic modes of cultivation. D. tertiolecta showed the ability to grow under mixotrophic (acetate and glucose), heterotrophic (glucose) and photoautotrophic condition under high $CO_2$ concentration (15%). With all the organic carbon sources (glucose, glycerol and acetate) tested in this study, 1~5% acetate enhanced cell growth rate and lipid content, while higher concentrations of acetate (10% and 15%) were inhibitory and resulted in cell death.

Codium fragile subsp. fragile (Suringar) Hariot in Tunisia: morphological data and status of knowledge

  • Cherif, Wafa;Ktari, Leila;Bour, Monia El;Boudabous, Abdellatif;Grignon-Dubois, Micheline
    • ALGAE
    • /
    • 제31권2호
    • /
    • pp.129-136
    • /
    • 2016
  • The Mediterranean Sea is currently facing dramatic changes and threats, including change in native species and accidental introductions. The introduced green alga Codium fragile subsp. fragile (Suringar) Hariot influences diversity and community structure in some parts of the world. This paper documents the distribution of this species in Tunisia and provides a morphological description of C. fragile subsp. fragile in Northern Tunisia. Results confirm the identity of Tunisian specimens as the invasive subspecies C. fragile subsp. fragile. This is the first morphological characterization of this subspecies in Tunisia.

해산 녹조류 참홑파래, Monostroma nitidum의 원형질체 분리와 분화 (Protoplast Isolation and Differentiation of Marine Green Alga Monostroma nitidum)

  • 조용철;공용근;윤장택;선상미;정규화
    • 한국수산과학회지
    • /
    • 제32권1호
    • /
    • pp.117-120
    • /
    • 1999
  • 해산 녹조류 참흩파래, Monostroma nitidum의 엽체를 효소처리하여 다량의 원형질체를 분리하였다. 최적 효소액의 조합은 $4\%$ R-10+$3\%$ Macerozyme R-10+$3\%$ Abalone acetone power로서 생체조직 300mg 당 $4.41\times10^6$개의 원형질체가 분리되었다. 원형질체의 수율은 효소처리 270분에 최대였다. 분리 직후의 원형질체는 구형으로 직경 $13\~33\mu$m의 크기였다. 분리된 원형질체는 0.4M mannitol을 함유한 f/2배지에서 배양한 후 매주 mannitol이 함유되지 않은 f/2 배지로 절반씩 교환함으로서 분화율을 높일 수 있었다. f/2배지를 사용한 적정 배양조건에서 원형질체는 배양 3일 후 새로운 세포벽을 형성하였으며 10일 후 발아하기 시작하여 엽체로 발달하였다. 항생물질의 배지내 첨가는 배양체의 분화를 저해하였다.

  • PDF

Dark Hydrogen Production by a Green Microalga, Chlamydomonas reinhardtii UTEX 90

  • SIM SANG JUN;GONG GYEONG TAEK;KIM MI SUN;PARK TAl HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1159-1163
    • /
    • 2005
  • The production of hydrogen by Chlamydomonas reinhardtii UTEX 90, a marine green alga, was performed under dark fermentation. The effects of initial nitrogen and phosphorus concentration on the cell growth and the production of hydrogen and organic substances were investigated. In the growth stage, the maximum dry cell weight (DCW) was 3 g/l when the initial ammonium concentration was 15 mM. In the dark fermentation, the maximum hydrogen production was $3.5\;{\mu}mol/\;mg$ DCW when the initial nitrogen concentration was 7.5 mM. The nitrogen concentration had a greater effect on organic compound and hydrogen production than the phosphorus concentration during the dark fermentation. An investigation of the duration of dark fermentation showed that, at least until three days, dark fermentation should be prolonged for maximum hydrogen production.

Isolation of an Algal Growth-enhancer Polysaccharide from the Chlorophyta Monostroma nitidum

  • Cho, Ji-Young;Luyen Hai Quoc;Khan Mohammed N.A.;Shin, Hyun-Woung;Park, Nam-Gyu;Hong, Yong-Ki
    • Fisheries and Aquatic Sciences
    • /
    • 제9권3호
    • /
    • pp.115-117
    • /
    • 2006
  • A micro algal growth-enhancing polysaccharide compound was isolated from the green alga Monostroma nitidum using water extraction, molecular fractionation, a DEAE-cellulose column, and fast protein liquid chromatography using a Superose-12 column. The yield of the compound from the seaweed powder was 8.3$\times$l0$^{-3}$%. At 2 mg/mL concentration, the polysaccharide enhanced Tetraselmis suecica cell growth in f/2 medium by approximately 160%.

Epiphytic Communities on Marine Plants of Seychelles, Indian Ocean, East Africa

  • Ivin, V.V.;Zvyagintsev, A.Yu.;Titlyanova, T.V.
    • Ocean and Polar Research
    • /
    • 제22권1호
    • /
    • pp.37-43
    • /
    • 2000
  • Epiphytic communities on marine plants of Seychelles (Indian Ocean Island group associated with East Africa) were investigated in January - March of 1989 during the $15^{th}$ biological voyage of the research vessel cademic Alexander Nesmeyanov. A seagrass species, Thalassodendron ciliatum, and macroalgae (Sargassum spp. and Halimeda spp.) were tested for host substrates and biomass of their dominant epiphytes were assessed. Also, in order to understand the effect of shading and nutrient filtering by epiphytes, two series of photosynthetic rates were compared for Th. ciliatum host leaves having 10% and no epiphytes. Total of 84 species of algae and main taxons of benthic animals were identified from three different host plants. An average biomass of the epiphytes on Th. cihiatum was $184.6g\;kg^{-1}$ and dominant species were green alga Halimeda opuntia, red algae Dictyurus occidentalis and Gelidiella myrioclada. These dominant species and their biomass were remarkably varied with depth increment. On Sargassum spp., an average biomass of the epiphytes was $0.18g\;kg^{-1}$ and the maximum biomass was never exceeded $0.16g\;kg^{-1}$. In the case of Halimeda spp. an average biomass of the epiphytes was $8.0g\;kg^{-1}$, and dominant species were Peyssonnelia dubyi, sponges and decapods. Photosynthetic rates of Th. ciliatum were significantly reduced in the leaves having 10% epiphytes (1.72 times lower, t=6.718, p<0.001).

  • PDF

Life History and Systematic Studies of Pseudothrix borealis gen. et sp. nov. (=North Pacific Capsosiphon groenlandicus, Ulotrichaceae, Chlorophyta)

  • Hanic, Louis A.;Lindstrom, Sandra C.
    • ALGAE
    • /
    • 제23권2호
    • /
    • pp.119-133
    • /
    • 2008
  • We cultured a tubular marine green alga, originally identified as Capsosiphon groenlandicus (J. Agardh) K.L. Vinogradova, from Amaknak Island, Alaska. The alga had an alternation of heteromorphic generations in which tubular monoecious fronds produced quadriflagellate zoospores and/or biflagellate isogametes. The gametes fused to produce cysts or Codiolum-like zygotes with long, tortuous stalks. Cysts and codiola produced 8-16 aplanospores, which germinated in situ to yield upright fronds. Fronds arising from both aplanospores and zoospores displayed a distinctive development in which non-septate colorless rhizoids from the base of the initially uniseriate, Ulothrix-like filament were transformed into septate uniseriate Ulothrix-like photosynthetic filaments. These transformed filaments then developed new basal non-septate rhizoids. This pattern of rhizoids becoming filaments, which then produced new rhizoids, was repeated to yield a tuft of up to 50 fronds. Periclinal and longitudinal divisions occurred in each filament, starting basally, until the mature tubular thallus was achieved. Pyrenoid ultrastructure revealed several short inward extensions of chloroplast lamellae, each of which was surrounded by pyrenoglobuli. Analysis of ribosomal SSU and ITS sequences placed this alga in the family Ulotrichaceae, order Ulotrichales, together with but as a distinct species from North Atlantic Capsosiphon groenlandicus. Analysis of a partial ITS sequence from authentic Capsosiphon fulvescens, the current name of the type of the genus Capsosiphon, indicated that neither our material nor C. groenlandicus belongs in that genus, and we propose a new genus, Pseudothrix, to accommodate both species. We propose P. borealis for the North Pacific entity formerly called C. groenlandicus and make the new combination P. groenlandica for the Atlantic species.

Downregulation of PyHRG1, encoding a novel secretory protein in the red alga Pyropia yezoensis, enhances heat tolerance

  • Han, Narae;Wi, Jiwoong;Im, Sungoh;Lim, Ka-Min;Lee, Hun-Dong;Jeong, Won-Joong;Kim, Geun-Joong;Kim, Chan Song;Park, Eun-Jeong;Hwang, Mi Sook;Choi, Dong-Woog
    • ALGAE
    • /
    • 제36권3호
    • /
    • pp.207-217
    • /
    • 2021
  • An increase in seawater temperature owing to global warming is expected to substantially limit the growth of marine algae, including Pyropia yezoensis, a commercially valuable red alga. To improve our knowledge of the genes involved in the acquisition of heat tolerance in P. yezoensis, transcriptomes sequences were obtained from both the wild-type SG104 P. yezoensis and heat-tolerant mutant Gy500. We selected 1,251 differentially expressed genes that were up- or downregulated in response to the heat stress condition and in the heat-tolerant mutant Gy500, based on fragment per million reads expression values. Among them, PyHRG1 was downregulated under heat stress in SG104 and expressed at a low level in Gy500. PyHRG1 encodes a secretory protein of 26.5 kDa. PyHRG1 shows no significant sequence homology with any known genes deposited in public databases to date. However, PyHRG1 homologs were found in other red algae, including other Pyropia species. When PyHRG1 was introduced into the single-cell green alga Chlamydomonas reinhardtii, transformed cells overexpressing PyHRG1 showed severely retarded growth. These results demonstrate that PyHRG1 encodes a novel red algae-specific protein and plays a role in heat tolerance in algae. The transcriptome sequences obtained in this study, which include PyHRG1, will facilitate future studies to understand the molecular mechanisms involved in heat tolerance in red algae.

Characterization of Heterochlorella luteoviridis (Trebouxiaceae, Trebouxiophyceae) isolated from the Port of Jeongja in Ulsan, Korea

  • Kim, Kyeong Mi;Kang, Nam Seon;Jang, Hyeong Seok;Park, Joon Sang;Jeon, Byung Hee;Hong, Ji Won
    • 한국해양바이오학회지
    • /
    • 제9권2호
    • /
    • pp.22-29
    • /
    • 2017
  • A unicellular green alga was axenically isolated from the Port of Jeongja, Ulsan, Korea. Morphological, molecular, and biochemical analyses revealed that the isolate belonged to Heterochlorella luteoviridis. This is the first report of this species in Korea. The microalgal strain was named as H. luteoviridis MM0014 and its growth, lipid composition, and biomass properties were investigated. The strain thrived over a wide range of temperatures ($5-30^{\circ}C$) and withstood up to 0.5 M NaCl. The results of gas chromatography/mass spectrometry analysis showed that the isolate was rich in nutritionally important polyunsaturated fatty acids. Its major fatty acids were linoleic acid (35.6%) and ${\alpha}$-linolenic acid (16.2%). Thus, this indigenous marine microalga is a potential alternative source of ${\omega}3$ and ${\omega}6$ polyunsaturated fatty acids, which are currently obtained from fish and plant oils. Ultimate analysis indicated that the gross calorific value was $19.7MJ\;kg^{-1}$. In addition, the biomass may serve as an excellent animal feed because of its high protein content (51.5%). Therefore, H. luteoviridis MM0014 shows promise for applications in the production of microalgae-based biochemicals and biomass feedstock.

녹조 대발생종 금발대마디말(Cladophora vadorum)의 절편 생장에 온도, 조도 및 영양염 종류가 미치는 영향 (Effects of Temperature, Irradiance, and Nutrient Type on the Fragment Growth of Green Tide Alga Cladophora vadorum)

  • 나연주;전다빈;이정록;김영식;최한길;남기완
    • 한국수산과학회지
    • /
    • 제49권5호
    • /
    • pp.657-664
    • /
    • 2016
  • The green macroalga Cladophora vadorum bloomed along the coast at Sangrok Beach, Buan, South Korea, in September 2015. To elucidate the cause of bloom, the effects of environmental factors on the vegetative growth of adult fragments were examined. Growth experiments were carried out under different combinations of temperatures and irradiances, and with a single factor of nutrients (nitrogen, phosphorus). The maximal growth of C. vadorum was reported under the combination of 25°C and 100 μmol photons m−2s−1. The species grew under a wide range of N and P concentrations. The growth of C. vadorum peaked at 50 μM PO43−, 80 μM NH4+, and 100 μM NO3. Adult fragments formed holdfasts and new branches within 3 days in culture and became adults, showing polarized growth patterns, in 2 weeks. This is the first report showing the development of numerous bladelets from a segment in Cladophora species. The present results indicate that Cladophora blooms appear under growth conditions that are favorable in terms of temperatures, irradiance, and nutrients via fragment growth patterns producing rapid holdfasts and many bladelets.