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Abstract This study investigated the potential use of various organic carbon sources (glucose,  
glycerol and acetate) and different concentrations of CO2 for culturing marine microalga Dunaliella 
tertiolecta. Cell growth and lipid production were monitored under heterotrophic, mixotrophic 
and photoautotrophic modes of cultivation. D. tertiolecta showed the ability to grow under mixo-
trophic (acetate and glucose), heterotrophic (glucose) and photoautotrophic condition under high 
CO2 concentration (15%). With all the organic carbon sources (glucose, glycerol and acetate) 
tested in this study, 1~5% acetate enhanced cell growth rate and lipid content, while higher concen-
trations of acetate (10% and 15%) were inhibitory and resulted in cell death. 
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Introduction

Microalgae are one of the prospective feedstock for 
biofuels as their capability to convert CO2 into car-
bon-rich lipids or carbohydrates and lesser demand of 
cultivation area than agricultural energy crops [12]. 
Microalgae can grow photoautotrophically basically using 
inorganic carbons and solar energy, and some species 
are able to utilize organic carbons mixotrophically or 
heterotrophically [26,36,39]. High-density cultivation of 
biomass up to several grams per liter is possible in a 
small space using appropriate bioreactors, and their 
photosynthesis efficiency is higher than that of terres-
trial plants. 

The classical photoautotrophic culture is difficult to 
reach a high density of microalgae biomass due to the 

limited mass transfer of dissolved CO2 and light pene-
tration in broth [5,6]. Although many CO2 sources are 
gratuitous, it is not easy to connect the CO2 pipeline 
to microalgae reactor unless the location of the source 
is close enough. To overcome the light penetration is-
sue, microalgae that are able to grow heterotrophically 
by using organic carbon sources such as sugars or or-
ganic acids without light were studied widely [35,36]. 
Mixotrophic growth, which combines the use of an or-
ganic nutrient and light as energy sources, takes advan-
tages of both phototrophy and heterotrophy and there-
fore has the potential to attain high biomass concen-
tration while maintaining a high content of the valuable 
products in the microalgal biomass [25]. However, the 
cost of organic carbon (usually glucose) is usually high 
compared with all the necessary nutrients [21]. The cost 
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of glucose could contribute about 80% of the total cost 
of growth medium, making mixotrophic algae culti-
vation economically unfeasible [20].

Biodiesel is produced using neutral lipids 
(triglycerides) or fatty acids through trans-esterification 
with monoalkyl alcohol like methanol and a series of 
purification steps. Glycerol is produced as a byproduct 
of trans-esterification [34]. In general, 10 gallons of 
crude glycerol is generated for every 100 gallons of 
biodiesel produced [8,9]. Acetate can also be used as 
carbon source in microalgae mixotrophic cultures, and 
the incorporation of acetate is a process dependent on 
both anabolic and catabolic metabolism [4]. Therefore, 
searching inexpensive carbon sources like process by-
product that can be used for algal growth is important 
in scaling-up of heterotrophic or mixotrophic algal 
cultivation.

Dunaliella tertiolecta is a unicellular marine green 
alga (Chlorophyceae) that can be cultivated with in-
organic nutrients present in artificial sea water along 
with light. It has relatively high growth rate, high lipid 
content, and high contents of biodegradable biomass 
[7]. Previous studies had shown that lipid contents in 
Dunaliella could be enhanced by salinity and nitrate 
stress as well as by combining auxin with salt stress 
[2,23,33]. However, studies done on the effect of organ-
ic carbon sources on growth and lipid content in this 
species are limited. This research set out to investigate 
the influence of different organic carbons on growth 
and the production of lipid in D. tertiolecta.

Materials and Methods

Microalga and seed culture 
Marine microalga Dunaliella tertiolecta (UTEX# 

LB999) was cultivated in sterilized f/2 medium [11] 
containing 75 mg/L of NaNO3, 4.32 mg/L of NaH2PO4, 
0.023 mg/L of ZnSO4∙7H2O, 0.217 mg/L of MnSO4∙
5H2O, 0.0073 mg/L of Na2MoO4∙2H2O, 0.014 mg/L of 
CoSO4∙7H2O, 0.0068 mg/L of CuCl2∙2H2O, 4.6 mg/L 
of Fe(NH4)2(SO4)2∙6H2O, 4.4 mg/L of Na2EDTA.2H2O 
and vitamins, supplemented with artificial seawater 

(MBL) having  24.72 g/L of NaCl, 0.67 g/L of KCl, 
1.36 g/L of CaCl2∙2H2O, 4.66 g/L of MgCl2∙6H2O, 6.29 
g/L of MgSO4∙7H2O, 0.18 g/L of NaHCO3 and 0.606 
g/L of Tris∙HCl. Initially 100 mL of f/2 medium in 250 
mL flask was used for cell growth in shaking incubator 
under light intensity (80–100 µmol/m2/s) and 25oC. 
When the cells reached the stationary phase as de-
termined by optical density (OD) at 680 nm, they were 
shifted to bubble-column photobioreactor.

Cultivation
Cells were first grown photoautotrophically using 1 

L of f/2 medium [10] at 25oC in a bubble-column pho-
tobioreactor (ID, 6.5 cm; height, 37 cm) [30]. The re-
actor was supplied with filtered air using 0.2 µm PTFE 
membrane at a rate of 0.2 vvm (volume to volume per 
minute) with 2% CO2. Continuous light was supplied 
to cells using white fluorescent lights with ligh intensity 
of 100 µmol/m2/s. Photoautotrophic cultivation with 
normal nutrition (stage 1) was stopped after cell density 
reached 1.5–2.0 g/L. Cells were recovered through cen-
trifugation at 3000 rpm for 5 min and by removing the 
spent medium. Collected cells were thoroughly washed 
several times with nitrogen-deleted f/2 medium. As the 
second stage of culture, these cells were suspended in 
new media with different concentrations of glucose, 
glycerol, sodium acetate and CO2, under light or dark 
condition to monitor the growth and lipid production.

Lipid extraction and quantification
Modified Bligh and Dyer method was used for total 

lipids extraction [3]. Suspended sample (40 mL) of sec-
ond stage culture was harvested using centrifugation at 
3000 rpm for 5 min. Harvested sample was resuspended 
in 7.6 mL of chloroform/methanol/water (1/2/0.8, v/v/v). 
Then, sonication was done for 1 min at 100W and 20 
kHz (VCX 130, Sonics & Materials Inc., CT, USA) and 
the mixture was vortexed for 30 s. In order to make 
the final ratio of chloroform/methanol/water (1/1/0.9, 
v/v/v), chloroform (2 mL) and water (2 mL) were added 
and the mixture was vortexed again for 30s. 
Centrifugation of the solution was carried out at 3000 
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rpm for 5 min and the bottom layer of solution was 
transferred to new tube. The same procedure of ex-
traction was repeated using the upper layer but with half 
of solvent used previously. The separated bottom layer 
(chloroform fraction) was combined and evaporated for 
24 h in a drying oven at 80oC. The total lipid contents 
were expressed as the % of dry cell weight (DCW).

Analytical methods
Cell concentration was determined regularly after di-

lution by measuring optical density at wavelength of 
680 nm (OD680) using UV/VIS spectrophotometer 
(DR-4000U, Hach, USA). For measuring dry cell 
weight (DCW), 5 mL of microalgae biomass was fil-
tered using cellulose acetate membrane filter (0.7 µm 
pore size, 47 mm in diameter, Whatman, UK). The filter 
was dried in oven at 80oC for 12 h and then transferred 
to desiccator until the weight was invariant. For con-
verting OD680 values into biomass, 1.0 unit of OD680 

equals 0.96 of DCW g/L approximately. Reading mul-
ti-wavelength UV absorbance according to the standard 
method was used for nitrate determination [1].

Results and Discussion

Effect of glucose on cell growth and lipid content
Heterotrophic cultivation for microalgae is defined as 

the cultivation with organic carbons without the light. 
Glucose is one of the most easily assimilable organic car-
bon sources not only for heterotrophic bacteria but also 
for the growth of many microalgae species [5,6]. Figure 
1a shows the growth of D. tertiolecta in heterotrophic 
cultivation with glucose in the dark and that best cell 
growth rate was achieved when Dunaliella tertiolecta was 
grown under heterotrophic condition on 1~5% glucose. 
On the other hand, lipid contents decreased in the pres-
ence of all glucose concentrations (Figure 1b). Similarly 
to the present study, previous studies have shown that 
heterotrophic growth of cells on glucose resulted in de-
crease of lipid content although glucose addition has signi
ficant effect on cell growth for some microalgae strains 
[21]. There was no merit in heterotrophic cultivation of 

the present strain of D. tertiolecta using glucose.
Figure 2 shows mixotrophic cultivation of D. tertio-

lecta in the presence of light and glucose. Best cell 
growth was achieved in cultures supplied with low glu-
cose concentration, i.e., 1% and 5% (Figure 2a). Cell 
growth became slow at 10% and 15% glucose condition. 
Although lipid content was not influenced by different 
glucose concentrations, overall lipid contents were 
slightly decreased as time passed in all cases (Figure 
2b). It was also reported that, under mixotrophic growth 
conditions, cell growth was increased significantly under 
low glucose level (1% and 2%) as compared with high 
glucose level [21]. The present tendency of lipid was 
in accordance with previous studies where no large in-
crease of lipid content was observed [22]. However, the 
rise in lipid yield was possible due to the increased 
biomass. In the present study, it was concluded for D. 
tertiolecta that mixotrophic culture is more advanta-
geous than heterotrophic culture in terms of biomass 
productivity and lipid contents.

Effect of glycerol on mixotrophic cell growth and 
lipid content

During transesterification reaction between triglyceride 
and alcohol in the production of biodiesel, glycerol is 
produced as a byproduct [31]. Therefore, if glycerol can 
be used as an organic carbon for mixotrophic cultivation, 
it would be beneficial in the reduction of organic waste 
generation and in obtaining organic carbon gratuitously. 

Figure 3 shows the results of glycerol addition in 
mixotrophic culture of D. tertiolecta. Although 1~5% 
glycerol resulted in increased biomass but the extent 
was not high (Figure 3a). It was reported that biomass 
productivity in C. protothecoides was increased when 
glycerol was used as carbon source [38]. When glycerol 
was used for cyanobacterium Spirulina platensis, lipids 
and pigments production was increased [24]. Similarly, 
when marine microalga Schizochytrium limacinum 
SR21 was grown on glycerol, docosahexaenoic acid (DHA) 
and other lipids were produced [27]. Here, lipid contents were 
not enhanced under glycerol variation (Figure 3b), which im-
plies that glycerol effect on lipid is species dependent.
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Figure 1. Effect of glucose in dark on (a) cell growth and (b) lipid content 
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Figure 2. Effect of glucose in the presence of light on (a) cell growth and (b) lipid content
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 Figure 3. Effect of glycerol in the presence of light on (a) cell growth and (b) lipid content
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Effect of acetate on mixotrophic cell growth and 
lipid content

Figure 4 shows the effect of acetate as mixotrophic 
carbon source in the presence of light. Best cell growth 
was achieved in case of 5% acetate concentration 
(Figure 4a). Higher concentration of sodium acetate at 
10 and 15% resulted in high growth rate at early stage 
of experiment, but this high concentration of sodium 
acetate resulted in intoxication of algal cells. The color 
of the algal cells was bleached and eventually the cells 
died within 24 h. Other studies also showed that the 
use of sodium acetate is problematic because its effect 
on microalgae is concentration dependent [13]. Acetate 
concentrations above 1 g/L or less may cause growth 
inhibition due to algae intoxication [17]. In Figure 4b, 
lipid content increased by 5% within 12 h in the pres-
ence of 1% sodium acetate, which is similar to other 
studies where the growth and lipid accumulation was 
enhanced under lower concentrations of acetate [28].

Mixotrophic operation is capable of utilizing both organ-
ic as well as inorganic carbon sources, resulting in high 
biomass productivity in growth phase [29]. In general, mix-
otrophic cultures are advantageous to obtain higher bio-
mass productivity due to growth-stimulating effects of light 
[16]. Photochemical reactions can enhance ATP formation 
and organic carbon metabolism in mixotrophic mode [37]. 

Photoautotrophic culture with continuous CO2 
supply 

Photoautotrophic cultivation of D. tertiolecta was 
carried out as a reference and results are shown in 
Figure 5, where 15% CO2 was best for obtaining max-
imum growth (Figure 5a). This result is somewhat dif-
ferent from other studies in that the optimal condition 
for maximum growth rate of D. tertiolecta was under 
6% CO2 or 10% CO2 [17, 32]. Since the growth rate 
may depend on species chosen, gas supply rate and oth-
er multiple factors, it is difficult to generalize optimal 
CO2 levels. Certain microalgae species/strains have 
ability to adapt to environmental change [14]. The lipid 
contents were almost similar under different CO2 con-
centrations except that lipid content was maintained rel-
atively high for a long time under 15% CO2 condition 
(Figure 5b). A slight decrease in lipid content was ob-
served under all CO2 concentrations except 15% CO2 

case. Even though the achieved biomass productivity 
and lipid contents in autotrophic culture (Figure 5) 
looked better than those in mixotrophic or heterotrophic 
cultures (Figures 1 to 4), direct comparison is not possi-
ble because organic carbon concentrations were initial 
values, while CO2 was supplied continuously in auto-
trophic experiments.
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Figure 4. Effect of sodium acetate in the presence of light on (a) cell growth and (b) lipid content
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Figure 5. Effect of CO2 in the presence of light on (a) cell growth and (b) lipid content

Conclusions

The marine alga D. tertiolecta had shown the abilities 
to grow under mixotrophic (with acetate and glucose) 
and heterotrophic (with glucose) conditions as well as 
under photoautotrophic conditions. Use of organic car-
bons (glucose and acetate) favored cell growth in mixo-
trophic cultivation, while lipid contents were not influ-
enced significantly. Glycerol, the byproduct of biodiesel 
production, has no significant influence on cell growth 
and lipid production. Among all the organic carbon 
sources (glucose, glycerol and acetate) tested in this 
study and inorganic carbon source, 1~5% sodium ace-
tate under mixotrophic culture resulted in the increase 
of both cell density and lipid content although higher 
concentration of acetate was inhibitory. 
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