Dark Hydrogen Production by a Green Microalga, Chlamydomonas reinhardtii UTEX 90

  • SIM SANG JUN (Department of Chemical Engineering, Sungkyunkwan University) ;
  • GONG GYEONG TAEK (School of Chemical Engineering, Seoul National University) ;
  • KIM MI SUN (Biomass Research Team, Korea Institute of Energy Research) ;
  • PARK TAl HYUN (School of Chemical Engineering, Seoul National University)
  • Published : 2005.12.01

Abstract

The production of hydrogen by Chlamydomonas reinhardtii UTEX 90, a marine green alga, was performed under dark fermentation. The effects of initial nitrogen and phosphorus concentration on the cell growth and the production of hydrogen and organic substances were investigated. In the growth stage, the maximum dry cell weight (DCW) was 3 g/l when the initial ammonium concentration was 15 mM. In the dark fermentation, the maximum hydrogen production was $3.5\;{\mu}mol/\;mg$ DCW when the initial nitrogen concentration was 7.5 mM. The nitrogen concentration had a greater effect on organic compound and hydrogen production than the phosphorus concentration during the dark fermentation. An investigation of the duration of dark fermentation showed that, at least until three days, dark fermentation should be prolonged for maximum hydrogen production.

Keywords

References

  1. Benemann, J. R. 1997. Feasibility analysis of photobiological hydrogen production. Int. J. Hydrogen Energy 22: 979-987 https://doi.org/10.1016/S0360-3199(96)00189-9
  2. Choi, H. P., H. J. Kang, H. C. Seo, and H. C. Sung. 2002. Isolation and identification of photosynthetic bacterium useful for wastewater treatment. J. Microbiol. Biotechnol. 12: 643-648
  3. Gaffron, H. and J. Rubin. 1942. Fermentative and photochemical production of hydrogen in algae. J. Gen. Physiol. 26: 219-240 https://doi.org/10.1085/jgp.26.2.219
  4. Gong, G. T., S. J. Sim, D. W. Park, M. S. Kim, and T. H. Park. 2003. Optimization of organic compounds and hydrogen production in dark fermentation using Chlamydomonas reinhardtii. Kor. J. Biotechnol. Bioeng. 18: 51-57
  5. Hillmer, P. and H. Gest. 1977. $H_2$ metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata; $H_2$ production by growing culture. J. Bacteriol. 129: 724-731
  6. Hirokawa, T., M. Hata, and H. Taketa. 1982. Correlation between the starch level and the rate of starch synthesis during the development cycle of Chlorella ellipsoidea. Plant Cell Physiol. 23: 813-820
  7. Kim, J. P., C. D. Kang, S. J. Sim, M. S. Kim, and T. H. Park. 2005. Cell age optimization for hydrogen production induced by sulfur deprivation using a green alga Chlamydomonas reinhardtii UTEX 90. J. Microbiol. Biotechnol. 15: 131-135
  8. Kim, J. R., Y. K. Oh, Y. J. Yoon, E. Y. Lee, and S. H. Park. 2003. Oxygen sensitivity of carbon monoxide-dependent hydrogen production activity in Citrobacter sp. J. Microbiol. Biotechnol. 13: 717-724
  9. Kim, M. S., K. W. Moon, I. G. Lee, T. J. Lee, and C. K. Sung. 1999. Hydrogen gas production by fermentation from various sugars using Clostridium butyricum BCIB 9576. Kor. J. Appl. Microbiol. Biotechnol. 27: 62-69
  10. Miura, Y., K. Kagi, M. Shoga, and K. Miyamoto. 1982. Hydrogen production by a green alga, Chlamydomonas reinhardtii, in an alternating light/dark cycle. Biotechnol. Bioeng. 24: 1555-1563 https://doi.org/10.1002/bit.260240709
  11. Momilan, M. and T. Veziroglu. 1999. Recent directions of world hydrogen production. Renew. Sustain. Energy Rev. 3: 219-231 https://doi.org/10.1016/S1364-0321(98)00017-3
  12. Sim, S. J., J. Y. An, and B. W. Kim. 2001. Two-phase extraction culture of Botryococcus braunii producing longchain unsaturated hydrocarbons. Biotechnol. Lett. 23: 201-205 https://doi.org/10.1023/A:1005667522375
  13. Weaver, P. F., S. Lien, and M. Seibert. 1980. Photobiological production of hydrogen. Solar Energy 24: 3-45 https://doi.org/10.1016/0038-092X(80)90018-3